top of page

Diretrizes e Referências Bibliográficas em

Medicina da Obesidade
 

OBESITY MEDICINE GUIDELINES

AACE guidelines: Timothy Garvey, MD, FACE; Jeffrey I. Mechanick, MD, FACP, FACE, FACN, ECNU; Elise M. Brett, MD, FACE, CNSC, ECNU; Alan J. Garber, MD, PhD, FACE; Daniel L. Hurley, MD, FACE; Ania M. Jastreboff, MD, PhD; Karl Nadolsky, DO; Rachel Pessah-Pollack, MD; Raymond Plodkowski, MD; and Reviewers of the AACE/ACE Obesity Clinical Practice Guidelines

https://pro.aace.com/files/obesity/final-appendix.pdf

Adult OMA Obesity guidelines:

Obesity Algorithm®

Bays HE, McCarthy W, Christensen S, Tondt J, Karjoo S, Davisson L, Ng J, Golden A, Burridge K, Conroy R, Wells S, Umashanker D, Afreen S, DeJesus R, Salter D, Shah N, Richardson L. Obesity Algorithm eBook, presented by the Obesity Medicine Association. www.obesityalgorithm.org. 2020. https://obesitymedicine.org/obesity-algorithm/

Exercise – ACSM guidelines

https://www.abom.org/wp-content/uploads/2018/12/Quantity_and_Quality_of_Exercise_for_Developing.26-002.pdf

Obesity Management – ACC/AHA/TOS guidelines:Michael D. Jensen, Donna H. Ryan, Caroline M. Apovian, Jamy D. Ard, Anthony G. Comuzzie, Karen A. Donato, Frank B. Hu, Van S. Hubbard, John M. Jakicic, Robert F. Kushner, Catherine M. Loria, Barbara E. Millen, Cathy A. Nonas, F. Xavier Pi-Sunyer, June Stevens, Victor J. Stevens, Thomas A. Wadden, Bruce M. Wolfe, Susan Z. Yanovski

http://circ.ahajournals.org/content/early/2013/11/11/01.cir.0000437739.71477.ee

Pediatric Obesity—Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline: Dennis M. Styne, Silva A. Arslanian, Ellen L. Connor, Ismaa Sadaf Farooqi, M. Hassan Murad, Janet H. Silverstein, Jack A. Yanovski. J Clin Endocrinol Metab (2017) 102 (3): 709-757.

https://academic.oup.com/jcem/article-lookup/doi/10.1210/jc.2016-2573

Pediatric OMA guidelines:

Pediatric Obesity Algorithm®

Cuda S, Censani M, Joseph M, Browne N, O’Hara V. Pediatric Obesity Algorithm, presented by the Obesity Medicine Association. 2018-2020.   www.pediatricobesityalgorithm.org.

Pharmacotherapy – Endocrine Society Pharmacologic Management of Obesity guidelines: Caroline M. Apovian Louis J. Aronne Daniel H. Bessesen Marie E. McDonnell M. Hassan Murad Uberto Pagotto Donna H. Ryan Christopher D. Still

https://www.abom.org/wp-content/uploads/2018/08/Pharmacological-Management-of-Obesity-an-Endocrine-Society-Guideline.pdf

Surgery – AACE/TOS/ASMBS Guidelines 2013: Jeffrey I. Mechanick, M.D., Adrienne Youdim, M.D., Daniel B. Jones, M.D., M.S.,W., Timothy Garvey, M.D., Daniel L. Hurley, M.D., M. Molly McMahon, M.D., Leslie J. Heinberg, Ph.D., Robert Kushner, M.D., Ted D. Adams, Ph.D., M.P.H., Scott Shikora, M.D., John B. Dixon, M.B.B.S., Ph.D., Stacy Brethauer, M.D.

https://asmbs.org/wp/uploads/2014/05/AACE_TOS_ASMBS_Clinical_Practice_Guidlines_3.2013.pdf

The USPSTF Pediatric Guidelines (June 2017)

https://www.uspreventiveservicestaskforce.org/Page/Document/RecommendationStatementFinal/obesity-in-children-and-adolescents-screening1

REFERENCE HANDBOOKS AND TEXTBOOKS

  • Primary Care: Evaluation and Management of Obesity, 1st edition (2022) – edited by Robert Kushner, Daniel Bessesen, Adam Gilden

  • Obesity Prevention and Treatment: A Practical Guide, 1st edition (2022) – edited by James Rippe and John Foreyt

  • The ASMBS Textbook of Bariatric Surgery, 2nd edition (2020) – edited by Ninh T. Nguyen, Stacy A. Brethauer, John M. Morton, Jaime Ponce, Raul J. Rosenthal

  • Handbook of Obesity Treatment, 2nd edition (2018) – edited by Thomas Wadden and George Bray

  • The SAGES Manual of Bariatric Surgery, 2nd edition (2018) – edited by Kevin Reavis, Allison Barrett, Matthew Kroh

  • Pediatric Obesity: Etiology, Pathogenesis, and Treatment, 2nd edition (2018) – edited by Michael Freemark

  • Bariatric Surgery Complications: The Medical Practitioner’s Essential Guide, 1st edition (2017) – edited by Robin Blackstone

  • Bariatric Surgery Complications and Emergencies, 1st edition (2016) – edited by Daniel Herron

  • Handbook of Obesity, 4th edition (2014) – Volumes 1 and 2 – edited by George Bray and Claude Bouchard

  • Pediatric Obesity: Prevention, Intervention and Treatment Strategies for Primary Care, 2nd edition (2014) – Edited by Sandra Hassink

  • Managing Obesity: A Clinical Guide, 2nd edition (2009) – edited by Cathy Nonas and Gary Foster

 

AACE guidelines: Timothy Garvey, MD, FACE; Jeffrey I. Mechanick, MD, FACP, FACE, FACN, ECNU; Elise M. Brett, MD, FACE, CNSC, ECNU; Alan J. Garber, MD, PhD, FACE; Daniel L. Hurley, MD, FACE; Ania M. Jastreboff, MD, PhD; Karl Nadolsky, DO; Rachel Pessah-Pollack, MD; Raymond Plodkowski, MD; and Reviewers of the AACE/ACE Obesity Clinical Practice Guidelines
 

https://pro.aace.com/files/obesity/final-appendix.pdf


Adult OMA Obesity guidelines:
 

Obesity Algorithm®
 

Bays HE, McCarthy W, Christensen S, Tondt J, Karjoo S, Davisson L, Ng J, Golden A, Burridge K, Conroy R, Wells S, Umashanker D, Afreen S, DeJesus R, Salter D, Shah N, Richardson L. Obesity Algorithm eBook, presented by the Obesity Medicine Association. www.obesityalgorithm.org. 2020. https://obesitymedicine.org/obesity-algorithm/
 

Exercise – ACSM guidelines
 

https://www.abom.org/wp-content/uploads/2018/12/Quantity_and_Quality_of_Exercise_for_Developing.26-002.pdf
 

Obesity Management – ACC/AHA/TOS guidelines: Michael D. Jensen, Donna H. Ryan, Caroline M. Apovian, Jamy D. Ard, Anthony G. Comuzzie, Karen A. Donato, Frank B. Hu, Van S. Hubbard, John M. Jakicic, Robert F. Kushner, Catherine M. Loria, Barbara E. Millen, Cathy A. Nonas, F. Xavier Pi-Sunyer, June Stevens, Victor J. Stevens, Thomas A. Wadden, Bruce M. Wolfe, Susan Z. Yanovski
 

http://circ.ahajournals.org/content/early/2013/11/11/01.cir.0000437739.71477.ee
 

Pediatric Obesity—Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline: Dennis M. Styne, Silva A. Arslanian, Ellen L. Connor, Ismaa Sadaf Farooqi, M. Hassan Murad, Janet H. Silverstein, Jack A. Yanovski. J Clin Endocrinol Metab (2017) 102 (3): 709-757.
 

https://academic.oup.com/jcem/article-lookup/doi/10.1210/jc.2016-2573
 

Pediatric OMA guidelines:
 

Pediatric Obesity Algorithm®
 

Cuda S, Censani M, Joseph M, Browne N, O’Hara V. Pediatric Obesity Algorithm, presented by the Obesity Medicine Association. 2018-2020.   

www.pediatricobesityalgorithm.org.

 

Pharmacotherapy – Endocrine Society Pharmacologic Management of Obesity guidelines: Caroline M. Apovian Louis J. Aronne Daniel H. Bessesen Marie E. McDonnell M. Hassan Murad Uberto Pagotto Donna H. Ryan Christopher D. Still
 

https://www.abom.org/wp-content/uploads/2018/08/Pharmacological-Management-of-Obesity-an-Endocrine-Society-Guideline.pdf
 

Surgery – AACE/TOS/ASMBS Guidelines 2013: Jeffrey I. Mechanick, M.D., Adrienne Youdim, M.D., Daniel B. Jones, M.D., M.S.,W., Timothy Garvey, M.D., Daniel L. Hurley, M.D., M. Molly McMahon, M.D., Leslie J. Heinberg, Ph.D., Robert Kushner, M.D., Ted D. Adams, Ph.D., M.P.H., Scott Shikora, M.D., John B. Dixon, M.B.B.S., Ph.D., Stacy Brethauer, M.D.
 

https://asmbs.org/wp/uploads/2014/05/AACE_TOS_ASMBS_Clinical_Practice_Guidlines_3.2013.pdf
 

The USPSTF Pediatric Guidelines (June 2017)
 

https://www.uspreventiveservicestaskforce.org/Page/Document/RecommendationStatementFinal/obesity-in-children-and-adolescents-screening1
 

APPROACH TO THE PATIENT WITH OBESITY
 

  • Bray, GA. 2003. Diagnosis and Management of Obesity and The Metabolic Syndrome, 3rd Edition. Handbooks in Health Care.

  • Daniels SR, Hassink SG; COMMITTEE ON NUTRITION.The Role of the Pediatrician in Primary Prevention of Obesity. Pediatrics. 2015 Jul;136(1):e275-92. doi: 10.1542/peds.2015-1558. Epub 2015 Jun 29.

  • Wadden, TA, Stunkard, AJ. 2004. Handbook of Obesity Treatment. New York, NY. Guilford Press.
     

BARIATRIC SURGERY
 

  • Arroyo K, Kini SU, Harvey JE, Herron DM. Surgical therapy for diabesity. Mt Sinai J Med. 2010;77(5):418-30.

  • Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724-37.

  • Harvey EJ, Arroyo K, Korner J, Inabnet WB. Hormone changes affecting energy homeostasis after metabolic surgery. Mt Sinai J Med. 2010;77(5):446-65.

  • Kim T. Nguyen and Judith Korner.  The Sum of Many Parts: Potential Mechanisms for Improvement in Glucose Homeostasis After Bariatric Surgery.  Curr Diab Rep. 2014 May; 14(5): 481.

  • Schauer PR. et al. Bariatric Surgery versus Intensive Medical Therapy for Diabetes — 5-Year Outcomes. N Engl J Med 2017;376:641-51.

  • Sogg S, Lauretti J, West-Smith L. Recommendations for the presurgical psychosocial evaluation of bariatric surgery patients. Surg Obes Relat Dis. 2016;12:731-49.

  • Stefater  M. et al. All Bariatric Surgeries Are Not Created Equal: Insights From Mechanistic Comparisons. Endocrine Reviews, August 2012, 33(4) 595-622.

  • Strohmayer E, Via MA, Yanagisawa R. Metabolic management following bariatric surgery. Mt Sinai J Med. 2010;77(5):431-45.
     

BEHAVIORAL CHANGE              
 

  • Dietary Interventions, Physical Activity, and Behavioral Approaches to the Treatment of Obesity Diabetes Prevention Program (DPP) Research Group. The diabetes prevention program (DPP): Description of lifestyle intervention. Diabetes care. 2002;25:2165–2171.

  • The Look AHEAD Research Group. The look AHEAD study: A description of the lifestyle intervention and the evidence supporting it. Obesity. 2006;14:737–752.

  • Prochaska JO, et al. Stages of change and decisional balance for 12 problem behaviors. Health Psychol 1994; 13(1):3946.

  • Radesky J, Christakis D, Hill D, Ameenuddin N, Reid Chassiakos YL, Cross C, Hutchinson J, Levine A, Boyd R, Mendelson R, Moreno M, Swanson WS. Media and Young Minds. Pediatrics. 2016 Nov;138(5).

  • Rollnick S, Butler CC, Kinnersley P, Gregory J, Mash B. Motivational Interviewing. BMJ 2010;340:12421245
     

BENEFITS OF WEIGHT LOSS
 

  • Francesco Rubino, David M. Nathan, Robert H. Eckel, Philip R. Schauer, K. George M.M. Alberti et al. Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations. Diabetes Care 2016 Jun; 39(6): 861-877

  • Magkos F, Fraterrigo G, Yoshino J, et al. Effects of Moderate and Subsequent Progressive Weight Loss on Metabolic Function and Adipose Tissue Biology in Humans with Obesity. Cell Metab. 2016;S1550-4131(16)30053-5.

  • Philip R. Schauer, M.D., Deepak L. Bhatt, M.D., M.P.H., John P. Kirwan, Ph.D., Kathy Wolski, M.P.H. Bariatric Surgery versus Intensive Medical Therapy for Diabetes — 5-Year Outcomes. N Engl J Med 2017; 376:641-651February 16, 2017

  • Schmidt JB. et al. Effects of RYGB on energy expenditure, appetite and glycaemic control: a randomized controlled clinical trial. International Journal of Obesity (2016) 40, 281–290

  • Wing RR, Lang W, Wadden TA, et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011;34(7):1481-6.
     

ENDOSCOPIC PROCEDURES
 

  • Surgical Clinics of North America Volume 96, Issue 4, Pages 655-900 (August 2016).
     

EPIDEMIOLOGY
 

  • Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of Obesity Among Adults and Youth: United States, 2011-2014. NCHS Data Brief. 2015;(219):1-8.

  • CDC Overweight and Obesity Facts: https://www.cdc.gov/obesity/data/adult.html
     

NUTRITION
 

  • Christopher D. Gardner, PhD; Alexandre Kiazand, MD; Sofiya Alhassan, PhD; et al. Comparison of the Atkins, Zone, Ornish, and LEARN Diets for Change in Weight and Related Risk Factors Among Overweight Premenopausal Women. JAMA. 2007;297(9):969-977

  • Iris Shai, R.D., Ph.D., Dan Schwarzfuchs, M.D., Yaakov Henkin, M.D., Danit R. Shahar, R.D., Ph.D., Shula Witkow, R.D, et al. Weight Loss with a Low-Carbohydrate, Mediterranean, or Low-Fat Diet. N Engl J Med 2008; 359:229-241July 17, 2008.

  • Ramón Estruch, M.D., Ph.D., Emilio Ros, M.D., Ph.D., Jordi Salas-Salvadó, M.D., Ph.D., Maria-Isabel Covas, D.Pharm., Ph.D., Dolores Corella, D.Pharm., Ph.D., Fernando Arós, M.D., Ph.D., Enrique Gómez-Gracia, M.D et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. N Engl J Med 2013; 368:1279-1290April 4, 2013.
     

OBESITY-RELATED COMORBIDITIES
 

  • Kramer CK, Zinman B, Retnakaran R. Are metabolically healthy overweight and obesity benign conditions?: A systematic review and meta-analysis. Ann Intern Med. 2013;159(11):758-69.

  • Nguyen NT, Magno CP, Lane KT, Hinojosa MW, Lane JS. Association of hypertension, diabetes, dyslipidemia, and metabolic syndrome with obesity: findings from the National Health and Nutrition Examination Survey, 1999 to 2004. J Am Coll Surg. 2008;207(6):928-34.
     

PATHOPHYSIOLOGY
 

  • Fothergill E, Guo J, Howard L, et al. Persistent metabolic adaptation 6 years after “The Biggest Loser” competition. Obesity (Silver Spring). 2016;24(8):1612-9.

  • Sumithran P, Prendergast LA, Delbridge E, et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med. 2011;365(17):1597-604.
     

PHARMACOLOGIC TREATMENT OF OBESITY
 

  • Apovian CM, Aronne LJ, Bessesen DH, et al. Pharmacological management of obesity: An Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015;100(2):342-62.

  • Igel LI, Kumar RB, Saunders KH, Aronne LJ. Practical Use of Pharmacotherapy for Obesity. Gastroenterology. 2017; S0016-5085(17)30142-7.

  • Apovian, C, Aronne L, Powell, A, Clinical Management of Obesity. Professional Communications, Inc.; 1st edition (June 1, 2015)

  • Blackstone, RP. 2017. Bariatric Surgery Complications: The Medical Practitioner’s Essential Guide 1st ed. Springer.

  • Bray, G. & Bouchard, C. Handbook of Obesity, Fourth Edition, Two Volume set: Handbook of Obesity-Volume 2: Clinical Applications, Fourth Edition, 2014. CRC Press

  • Herron, DM. 2016. Bariatric Surgery Complications and Emergencies 1st ed. Springer.

  • Kushner R, Lawrence V, Kumar S. Practical Manual of Clinical Obesity, 2013. Wiley-Blackwell.

  • Mahan, K.L. & Escott-Stump, S.E., Krause’s Food and the Nutrition Care Process, 13th Edition, 2011. Saunders.

  • Nguyen, NT, Blackstone, RP. 2015. ASMBS Textbook of Bariatric Surgery, Volumes 1 and 2. Springer.

  • Shils, M.E., Modern Nutrition in Health and Disease, 11th Edition, 2012.Lippincott, Williams &Wilkins.

  • Steelman, G.M. & Westman, E.C., Obesity: Evaluation and Treatment Essentials, Second Edition, 2016. CRC Press.

  • Youdim, Adrienne et al. The Clinicians Guide to the Treatment of Obesity, 2015. Springer.

REFERÊNCIAS: OBESITY ALGORITHM®. © 2019 OBESITY MEDICINE ASSOCIATION;

1. Clinical Practice Guidelines We Can Trust 2011 https://www.ncbi.nlm.nih.gov/pubmed/24983061

Chronic Disease of Obesity

2. Bray GA, Kim KK, Wilding JPH, et al.: Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes Rev 2017 18:715-723. https://www.ncbi.nlm.nih.gov/pubmed/28489290

3. Jastreboff AM, Kotz CM, Kahan S, et al.: Obesity as a Disease: The Obesity Society 2018 Position Statement. Obesity (Silver Spring) 2019 27:7-9. https://www.ncbi.nlm.nih.gov/pubmed/30569641

4. Bays H: Adiposopathy, “sick fat,” Ockham’s razor, and resolution of the obesity paradox. Curr Atheroscler Rep 2014 16:409. https://www.ncbi.nlm.nih.gov/pubmed/24659222

5. Hales CM, Carroll MD, Fryar CD, et al.: Prevalence of Obesity Among Adults and Youth: United States, 2015-2016. NCHS Data Brief 2017 1-8. https://www.ncbi.nlm.nih.gov/pubmed/29155689

6. Fryar CD, Kruszon-Moran D, Gu Q, et al.: U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Center for Health Statistics Mean Body Weight, Height, Waist Circumference, and Body Mass Index Among Adults: United States, 1999–2000 Through 2015–2016. National Health Statistics Reports 2018 Number 122:1 - 16.

7. Puhl R, Peterson JL, Luedicke J: Motivating or stigmatizing? Public perceptions of weight-related language used by health providers. Int J Obes (Lond) 2013 37:612-619. https://www.ncbi.nlm.nih.gov/pubmed/22777543

8. Ravussin E, Ryan D: Response to “The need for people-first language in our Obesity journal”. Obesity (Silver Spring) 2015 23:918. https://www.ncbi.nlm.nih.gov/pubmed/25919920

9. National Institute of Diabetes and Digestive and Kidney Diseases. Health Information: Talking with patients about weight loss. https://www.niddk.nih.gov/health-information/health-topics/weight-control/medical/Pages/medical-care-for-patients-with-obesity.aspx (Accessed August 20, 2016).

10. American Society of Metabolic and Bariatric Surgeons Standards Manual version 2.0. Resources for Optimal Care of the Metabolic and Bariatric Surgery Patient 2016 https://www.facs.org/~/media/files/quality%20programs/bariatric/mbsaqip%20standardsmanual.ashx

(Accessed September 10, 2016).

11. Kushner RF, Kahan S: Introduction: The State of Obesity in 2017. Med Clin North Am 2018 102:1-11.

https://www.ncbi.nlm.nih.gov/pubmed/29156178

12. Bays H, Scinta W: Adiposopathy and epigenetics: an introduction to obesity as a transgenerational disease. Curr Med Res Opin 2015 31:2059-2069. https://www.ncbi.nlm.nih.gov/pubmed/26331354

Genetics

13. Chung WK: An overview of mongenic and syndromic obesities in humans. Pediatr Blood Cancer 2012 58:122-128. https://www.ncbi.nlm.nih.gov/pubmed/21994130

14. Herbst KL: Rare adipose disorders (RADs) masquerading as obesity. Acta Pharmacol Sin 2012 33:155-172. https://www.ncbi.nlm.nih.gov/pubmed/22301856

15. National Organization for Rare Disorders (NORD). Familial Partial Lipodystrophy https://rarediseases.org/for-patients-andfamilies/information-resources/rare-disease-information/ Accessed December 3, 2017.

16. Melvin A, Adams C, Flanagan C, et al.: Roux-en-Y Gastric Bypass Surgery in the Management of Familial Partial Lipodystrophy Type 1. J Clin Endocrinol Metab 2017 102:3616-3620. https://www.ncbi.nlm.nih.gov/pubmed/28973478

17. Metreleptin (MYALEPT®) Prescribing Information http://www.myaleptpro.com/sites/default/files/myalept_pi_sept2015_final.pdf (Accessed November 26, 2018).

18. Youngson NA, Morris MJ: What obesity research tells us about epigenetic mechanisms. Philos Trans R Soc Lond B Biol Sci 2013 368:20110337. https://www.ncbi.nlm.nih.gov/pubmed/23166398

19. Curley JP, Mashoodh R, Champagne FA: Epigenetics and the origins of paternal effects. Horm Behav 2011 59:306-314. https://www.ncbi.nlm.nih.gov/pubmed/20620140

20. Bays HE: “Sick fat,” metabolic disease, and atherosclerosis. Am J Med 2009 122:S26-37.

https://www.ncbi.nlm.nih.gov/pubmed/19110085

21. Bays HE: Adiposopathy is “sick fat” a cardiovascular disease? J Am Coll Cardiol 2011 57:2461-2473.

https://www.ncbi.nlm.nih.gov/pubmed/21679848

22. Bays HE: Adiposopathy, diabetes mellitus, and primary prevention of atherosclerotic coronary artery disease: treating “sick fat” through improving fat function with antidiabetes therapies. Am J Cardiol 2012 110:4B-12B. https://www.ncbi.nlm.nih.gov/pubmed/23062567

Additional references used in this section: [12]

Obesity Classification

23. De Lorenzo A, Soldati L, Sarlo F, et al.: New obesity classification criteria as a tool for bariatric surgery indication. World J Gastroenterol 2016 22:681-703. https://www.ncbi.nlm.nih.gov/pubmed/26811617

24. Rahman M, Berenson AB: Accuracy of current body mass index obesity classification for white, black, and Hispanic reproductive-age women. Obstet Gynecol 2010 115:982-988. https://www.ncbi.nlm.nih.gov/pubmed/20410772

25. Misra A, Shrivastava U: Obesity and dyslipidemia in South Asians. Nutrients 2013 5:2708-2733. https://www.ncbi.nlm.nih.gov/pubmed/23863826

26. Banack HR, Wactawski-Wende J, Hovey KM, et al.: Is BMI a valid measure of obesity in postmenopausal women? Menopause 2017 https://www.ncbi.nlm.nih.gov/pubmed/29135897

27. Hsu WC, Araneta MR, Kanaya AM, et al.: BMI cut points to identify at-risk Asian Americans for type 2 diabetes screening. Diabetes Care 2015 38:150-158. https://www.ncbi.nlm.nih.gov/pubmed/25538311

28. American Council on Exercise: What are the guidelines for percentage of body fat loss? http://www.acefitness.org/acefit/healthy-livingarticle/60/112/what-are-the-guidelines-for-percentage-of-body-fat (Accessed August 20, 2016). 2009

29. Calculator.net Army Fat Calculator https://www.calculator.net/army-body-fat-calculator.html (Accessed November 26, 2018).

30. Grundy SM, Stone NJ, Bailey AL, et al.: 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2018 https://www.ncbi.nlm.nih.gov/pubmed/30423393

31. Bays H: Central obesity as a clinical marker of adiposopathy; increased visceral adiposity as a surrogate marker for global fat dysfunction. Curr Opin Endocrinol Diabetes Obes 2014 21:345-351. https://www.ncbi.nlm.nih.gov/pubmed/25106000

32. Carroll JF, Chiapa AL, Rodriquez M, et al.: Visceral fat, waist circumference, and BMI: impact of race/ethnicity. Obesity (Silver Spring) 2008 16:600-607. https://www.ncbi.nlm.nih.gov/pubmed/18239557

33. Wang Z, Ma J, Si D: Optimal cut-off values and population means of waist circumference in different populations. Nutr Res Rev 2010 23:191-199. https://www.ncbi.nlm.nih.gov/pubmed/20642876

34. ICD10Data.com. Overweight and Obesity. http://www.icd10data.com/ICD10CM/Codes/E00-E89/E65-E68/E66-/E66 (Accessed August 20, 2016).

35. Sun Q, van Dam RM, Spiegelman D, et al.: Comparison of dual-energy x-ray absorptiometric and anthropometric measures of adiposity in relation to adiposity-related biologic factors. Am J Epidemiol 2010 172:1442-1454. https://www.ncbi.nlm.nih.gov/pubmed/20952596

36. Li C, Ford ES, Zhao G, et al.: Estimates of body composition with dual-energy X-ray absorptiometry in adults. Am J Clin Nutr 2009 90:1457-1465. https://www.ncbi.nlm.nih.gov/pubmed/19812179

37. Imboden MT, Welch WA, Swartz AM, et al.: Reference standards for body fat measures using GE dual energy x-ray absorptiometry in Caucasian adults. PLoS One 2017 12:e0175110. https://www.ncbi.nlm.nih.gov/pubmed/28388669

38. Stults-Kolehmainen MA, Stanforth PR, Bartholomew JB, et al.: DXA estimates of fat in abdominal, trunk and hip regions varies by ethnicity in men. Nutr Diabetes 2013 3:e64. https://www.ncbi.nlm.nih.gov/pubmed/23507968

39. Grundy SM, Neeland IJ, Turer AT, et al.: Waist circumference as measure of abdominal fat compartments. J Obes 2013 2013:454285.

40. Camhi SM, Bray GA, Bouchard C, et al.: The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: sex and race differences. Obesity (Silver Spring) 2011 19:402-408.

Fat Mass Disease

41. Kushner RF, Blatner DJ: Risk assessment of the overweight and obese patient. J Am Diet Assoc 2005 105:S53-62. https://www.ncbi.nlm.nih.gov/pubmed/15867897

42. Kushner RF, Roth JL: Assessment of the obese patient. Endocrinol Metab Clin North Am 2003 32:915-933.

https://www.ncbi.nlm.nih.gov/pubmed/14711068

43. Bays HE: Current and investigational antiobesity agents and obesity therapeutic treatment targets. Obes Res 2004 12:1197-1211. https://www.ncbi.nlm.nih.gov/pubmed/15340100

44. Pearl RL, Wadden TA, Hopkins CM, et al.: Association between weight bias internalization and metabolic syndrome among treatment-seeking individuals with obesity. Obesity (Silver Spring) 2017 25:317-322. https://www.ncbi.nlm.nih.gov/pubmed/28124502

45. Obesity Action Coalition. Weight Bias Guides. https://www.obesityaction.org/action-through-advocacy/weight-bias/weight-biasguides/ (Accessed January 5, 2019).

46. Phelan SM, Burgess DJ, Yeazel MW, et al.: Impact of weight bias and stigma on quality of care and outcomes for patients with obesity. Obes Rev 2015 16:319-326.

47. Shamsuzzaman AS, Gersh BJ, Somers VK: Obstructive sleep apnea: implications for cardiac and vascular disease. JAMA 2003 290:1906-1914. https://www.ncbi.nlm.nih.gov/pubmed/14532320

48. Gileles-Hillel A, Kheirandish-Gozal L, Gozal D: Biological plausibility linking sleep apnoea and metabolic dysfunction. Nat Rev Endocrinol 2016 12:290-298. https://www.ncbi.nlm.nih.gov/pubmed/26939978

49. Nagappa M, Liao P, Wong J, et al.: Validation of the STOP-Bang Questionnaire as a Screening Tool for Obstructive Sleep Apnea among Different Populations: A Systematic Review and Meta-Analysis. PLoS One 2015 10:e0143697. https://www.ncbi.nlm.nih.gov/pubmed/26658438

50. Weaver TE, Calik MW, Farabi SS, et al.: Innovative treatments for adults with obstructive sleep apnea. Nat Sci Sleep 2014 6:137-147. https://www.ncbi.nlm.nih.gov/pubmed/25429246

Adiposopathy (Sick Fat Disease)

51. Bays HE, Jones PH, Jacobson TA, et al.: Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: FULL REPORT. J Clin Lipidol 2016 10:33-57. https://www.ncbi.nlm.nih.gov/pubmed/26892120

52. Kloting N, Bluher M: Adipocyte dysfunction, inflammation and metabolic syndrome. Rev Endocr Metab Disord 2014 15:277-287. https://www.ncbi.nlm.nih.gov/pubmed/25344447

53. Bluher M: Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Pract Res Clin Endocrinol Metab 2013 27:163-177. https://www.ncbi.nlm.nih.gov/pubmed/23731879

54. Bays HE, Gonzalez-Campoy JM, Henry RR, et al.: Is adiposopathy (sick fat) an endocrine disease? Int J Clin Pract 2008 62:1474-1483. https://www.ncbi.nlm.nih.gov/pubmed/18681905

55. Bays HE, Gonzalez-Campoy JM, Bray GA, et al.: Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther 2008 6:343-368. https://www.ncbi.nlm.nih.gov/pubmed/18327995

56. Russo L, Lumeng CN: Properties and functions of adipose tissue macrophages in obesity. Immunology 2018 155:407-417. https://www.ncbi.nlm.nih.gov/pubmed/30229891

57. Chylikova J, Dvorackova J, Tauber Z, et al.: M1/M2 macrophage polarization in human obese adipose tissue. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018 162:79-82. https://www.ncbi.nlm.nih.gov/pubmed/29765169

58. Pirola L, Ferraz JC: Role of pro- and anti-inflammatory phenomena in the physiopathology of type 2 diabetes and obesity. World J Biol Chem 2017 8:120-128. https://www.ncbi.nlm.nih.gov/pubmed/28588755

59. Hamer M, Batty GD: Association of body mass index and waist-to-hip ratio with brain structure: UK Biobank study. Neurology 2019 https://www.ncbi.nlm.nih.gov/pubmed/30626649

60. Fauser BC, Tarlatzis BC, Rebar RW, et al.: Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril 2012 97:28-38 e25. https://www.ncbi.nlm.nih.gov/pubmed/22153789

61. Lim SS, Norman RJ, Davies MJ, et al.: The effect of obesity on polycystic ovary syndrome: a systematic review and meta-analysis. Obes Rev 2013 14:95-109. https://www.ncbi.nlm.nih.gov/pubmed/23114091

62. Bays HE, Gonzalez-Campoy JM, Schorr AB: What men should know about metabolic syndrome, adiposopathy and ‘sick fat’. Int J Clin Pract 2010 64:1735-1739.  https://www.ncbi.nlm.nih.gov/pubmed/21070523

63. Chetrite GS, Feve B: Preface to special issue on: Adiposopathy in Cancer and (Cardio)Metabolic Diseases: an Endocrine Approach - Part 4. Horm Mol Biol Clin Investig 2015 23:1-4. https://www.ncbi.nlm.nih.gov/pubmed/26353175

64. Booth A, Magnuson A, Fouts J, et al.: Adipose tissue, obesity and adipokines: role in cancer promotion. Horm Mol Biol Clin Investig 2015 21:57-74. https://www.ncbi.nlm.nih.gov/pubmed/25781552

65. Hursting SD, Dunlap SM: Obesity, metabolic dysregulation, and cancer: a growing concern and an inflammatory (and microenvironmental) issue. Ann N Y Acad Sci 2012 1271:82-87. https://www.ncbi.nlm.nih.gov/pubmed/23050968

66. Whiteman DC, Wilson LF: The fractions of cancer attributable to modifiable factors: A global review. Cancer Epidemiol 2016 44:203-221. https://www.ncbi.nlm.nih.gov/pubmed/27460784

67. Lauby-Secretan B, Scoccianti C, Loomis D, et al.: Body Fatness and Cancer—Viewpoint of the IARC Working Group. N Engl J Med 2016 375:794-798. https://www.ncbi.nlm.nih.gov/pubmed/27557308

68. Steele CB, Thomas CC, Henley SJ, et al.: Vital Signs: Trends in Incidence of Cancers Associated with Overweight and Obesity - United States, 2005-2014. MMWR Morb Mortal Wkly Rep 2017 66:1052-1058. https://www.ncbi.nlm.nih.gov/pubmed/28981482

69. Subak LL, Richter HE, Hunskaar S: Obesity and urinary incontinence: epidemiology and clinical research update. J Urol 2009 182:S2-7. https://www.ncbi.nlm.nih.gov/pubmed/19846133

70. Kudish BI, Iglesia CB, Sokol RJ, et al.: Effect of weight change on natural history of pelvic organ prolapse. Obstet Gynecol 2009 113:81-88. https://www.ncbi.nlm.nih.gov/pubmed/19104363

71. American College of Obstetricians and Gynecologists. Obesity and Pregnancy. Frequently asked Questions. https://www.acog.org/-/media/For-Patients/faq182.pdf (Accessed September 10, 2016).

72. American College of Obstetricians Gynecologists: ACOG Committee opinion no. 549: obesity in pregnancy. Obstet Gynecol 2013 121:213-217. https://www.ncbi.nlm.nih.gov/pubmed/23262963

73. Pasquali R, Patton L, Gambineri A: Obesity and infertility. Curr Opin Endocrinol Diabetes Obes 2007 14:482-487. https://www.ncbi.nlm.nih.gov/pubmed/17982356

74. Yu Z, Han S, Zhu J, et al.: Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: asystematic review and meta-analysis. PLoS One 2013 8:e61627. https://www.ncbi.nlm.nih.gov/pubmed/23613888

Additional references used in this section: [4]

Obesity Paradox

75. Lavie CJ, De Schutter A, Parto P, et al.: Obesity and Prevalence of Cardiovascular Diseases and Prognosis-The Obesity Paradox Updated. Prog Cardiovasc Dis 2016 58:537-547. https://www.ncbi.nlm.nih.gov/pubmed/26826295

76. Smith KB, Smith MS: Obesity Statistics. Prim Care 2016 43:121-135, ix. https://www.ncbi.nlm.nih.gov/pubmed/26896205

77. Akin I, Nienaber CA: “Obesity paradox” in coronary artery disease. World J Cardiol 2015 7:603-608.

https://www.ncbi.nlm.nih.gov/pubmed/26516414

78. Yu E, Ley SH, Manson JE, et al.: Weight History and All-Cause and Cause-Specific Mortality in Three Prospective Cohort Studies. Ann Intern Med 2017 166:613-620.

79. Caleyachetty R, Thomas GN, Toulis KA, et al.: Metabolically Healthy Obese and Incident Cardiovascular Disease Events Among 3.5 Million Men and Women. J Am Coll Cardiol 2017 70:1429-1437. https://www.ncbi.nlm.nih.gov/pubmed/28911506

80. Chang VW, Langa KM, Weir D, et al.: The obesity paradox and incident cardiovascular disease: A population-based study. PLoS One 2017 12:e0188636. https://www.ncbi.nlm.nih.gov/pubmed/29216243

81. Bhaskaran K, Dos-Santos-Silva I, Leon DA, et al.: Association of BMI with overall and cause-specific mortality: a population-based cohort study of 3.6 million adults in the UK. Lancet Diabetes Endocrinol 2018 6:944-953. https://www.ncbi.nlm.nih.gov/pubmed/30389323

82. Khan SS, Ning H, Wilkins JT, et al.: Association of Body Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of Morbidity. JAMA Cardiol 2018 3:280-287. https://www.ncbi.nlm.nih.gov/pubmed/29490333

83. Wade KH, Carslake D, Sattar N, et al.: BMI and Mortality in UK Biobank: Revised Estimates Using Mendelian Randomization. Obesity (Silver Spring) 2018 26:1796-1806. https://www.ncbi.nlm.nih.gov/pubmed/30358150

84. Iliodromiti S, Celis-Morales CA, Lyall DM, et al.: The impact of confounding on the associations of different adiposity measures with the incidence of cardiovascular disease: a cohort study of 296 535 adults of white European descent. Eur Heart J 2018 39:1514-1520.

85. Jung CH, Lee WJ, Song KH: Metabolically healthy obesity: a friend or foe? Korean J Intern Med 2017 32:611-621. https://www.ncbi.nlm.nih.gov/pubmed/28602062

86. Mongraw-Chaffin M, Foster MC, Kalyani RR, et al.: Obesity Severity and Duration Are Associated With Incident Metabolic Syndrome: Evidence Against Metabolically Healthy Obesity From the Multi-Ethnic Study of Atherosclerosis. J Clin Endocrinol Metab 2016 101:4117-4124. https://www.ncbi.nlm.nih.gov/pubmed/27552544

87. Lavie CJ, Laddu D, Arena R, et al.: Healthy Weight and Obesity Prevention: JACC Health Promotion Series. J Am Coll Cardiol 2018 72:1506-1531. https://www.ncbi.nlm.nih.gov/pubmed/30236314

88. Guo F, Garvey WT: Cardiometabolic disease risk in metabolically healthy and unhealthy obesity: Stability of metabolic health status in adults. Obesity (Silver Spring) 2016 24:516-525. https://www.ncbi.nlm.nih.gov/pubmed/26719125

89. Kuk JL, Rotondi M, Sui X, et al.: Individuals with obesity but no other metabolic risk factors are not at significantly elevated allcause mortality risk in men and women. Clin Obes 2018 8:305-312. https://www.ncbi.nlm.nih.gov/pubmed/29998631

90. Schulze MB: Metabolic health in normal-weight and obese individuals. Diabetologia 2018

https://www.ncbi.nlm.nih.gov/pubmed/30569272

91. Gavrilova O, Marcus-Samuels B, Graham D, et al.: Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest 2000 105:271-278. https://www.ncbi.nlm.nih.gov/pubmed/10675352

92. Klein S, Fontana L, Young VL, et al.: Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med 2004 350:2549-2557. https://www.ncbi.nlm.nih.gov/pubmed/15201411

93. Steele L, Lloyd A, Fotheringham J, et al.: A retrospective cross-sectional study on the association between tobacco smoking and incidence of ST-segment elevation myocardial infarction and cardiovascular risk factors. Postgrad Med J 2015 91:492-496. https://www.ncbi.nlm.nih.gov/pubmed/26265789

94. Rallidis LS, Triantafyllis AS, Tsirebolos G, et al.: Prevalence of heterozygous familial hypercholesterolaemia and its impact on longterm prognosis in patients with very early ST-segment elevation myocardial infarction in the era of statins. Atherosclerosis 2016 249:17-21. https://www.ncbi.nlm.nih.gov/pubmed/27062405

95. Oesch L, Tatlisumak T, Arnold M, et al.: Obesity paradox in stroke - Myth or reality? A systematic review. PLoS One 2017 12:e0171334. https://www.ncbi.nlm.nih.gov/pubmed/28291782

96. Zhi G, Xin W, Ying W, et al.: “Obesity Paradox” in Acute Respiratory Distress Syndrome: Asystematic Review and Meta-Analysis. PLoS One 2016 11:e0163677. https://www.ncbi.nlm.nih.gov/pubmed/27684705

97. Park J, Ahmadi SF, Streja E, et al.: Obesity paradox in end-stage kidney disease patients. Prog Cardiovasc Dis 2014 56:415-425. https://www.ncbi.nlm.nih.gov/pubmed/24438733

98. Panwar B, Hanks LJ, Tanner RM, et al.: Obesity, metabolic health, and the risk of end-stage renal disease. Kidney Int 2015 87:1216-1222. https://www.ncbi.nlm.nih.gov/pubmed/25517912

99. Niederdeppe J, Roh S, Shapiro MA: Acknowledging individual responsibility while emphasizing social determinants in narratives to promote obesity-reducing public policy: a randomized experiment. PLoS One 2015 10:e0117565. https://www.ncbi.nlm.nih.gov/pubmed/25706743

Additional references used in this section: [4][7][21]

Stress and Obesity

100. Harrell CS, Gillespie CF, Neigh GN: Energetic stress: The reciprocal relationship between energy availability and the stress response. Physiol Behav 2016 166:43-55. https://www.ncbi.nlm.nih.gov/pubmed/26454211

101. Yau YH, Potenza MN: Stress and eating behaviors. Minerva Endocrinol 2013 38:255-267. https://www.ncbi.nlm.nih.gov/pubmed/24126546

102. Thaler JP, Guyenet SJ, Dorfman MD, et al.: Hypothalamic inflammation: marker or mechanism of obesity pathogenesis? Diabetes 2013 62:2629-2634. https://www.ncbi.nlm.nih.gov/pubmed/23881189

103. Moore CJ, Cunningham SA: Social position, psychological stress, and obesity: a systematic review. J Acad Nutr Diet 2012 112:518-526. https://www.ncbi.nlm.nih.gov/pubmed/22709702

104. Jackson SE, Kirschbaum C, Steptoe A: Hair cortisol and adiposity in a population-based sample of 2,527 men and women aged 54 to 87 years. Obesity (Silver Spring) 2017 25:539-544. https://www.ncbi.nlm.nih.gov/pubmed/28229550

105. Geer EB, Lalazar Y, Couto LM, et al.: A prospective study of appetite and food craving in 30 patients with Cushing’s disease. Pituitary 2016 19:117-126. https://www.ncbi.nlm.nih.gov/pubmed/26496766

106. Capuron L, Lasselin J, Castanon N: Role of Adiposity-Driven Inflammation in Depressive Morbidity. Neuropsychopharmacology 201742:115-128. https://www.ncbi.nlm.nih.gov/pubmed/27402495

107. Nishitani N, Sakakibara H: Association of psychological stress response of fatigue with white blood cell count in male daytime workers. Ind Health 2014 52:531-534. https://www.ncbi.nlm.nih.gov/pubmed/24975105

108. McGregor BA, Murphy KM, Albano DL, et al.: Stress, cortisol, and B lymphocytes: a novel approach to understanding academic stress and immune function. Stress 2016 19:185-191. https://www.ncbi.nlm.nih.gov/pubmed/26644211

Patient History

109. Nesbitt S, Palomarez RE: Review: Increasing Awareness and Education on Health Disparities for Health Care Providers. Ethn Dis 2016 26:181-190. https://www.ncbi.nlm.nih.gov/pubmed/27103768

110. Rusin M, Arsand E, Hartvigsen G: Functionalities and input methods for recording food intake: a systematic review. Int J Med Inform 2013 82:653-664. https://www.ncbi.nlm.nih.gov/pubmed/23415822

111. Jaworowska A, Blackham T, Davies IG, et al.: Nutritional challenges and health implications of takeaway and fast food. Nutr Rev 2013 71:310-318. https://www.ncbi.nlm.nih.gov/pubmed/23590707

112. Beechy L, Galpern J, Petrone A, et al.: Assessment tools in obesity - psychological measures, diet, activity, and body composition. Physiol Behav 2012 107:154-171. https://www.ncbi.nlm.nih.gov/pubmed/22548766

113. Horn DB, O’Neill JR, Pfeiffer KA, et al.: Predictors of physical activity in the transition after high school among young women. J Phys Act Health 2008 5:275-285. https://www.ncbi.nlm.nih.gov/pubmed/18382036

114. Vanhees L, De Sutter J, Gelada SN, et al.: Importance of characteristics and modalities of physical activity and exercise in defining the benefits to cardiovascular health within the general population: recommendations from the EACPR (Part I). Eur J Prev Cardiol 2012 19:670-686. https://www.ncbi.nlm.nih.gov/pubmed/22637742

115. Vanhees L, Geladas N, Hansen D, et al.: Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular risk factors: recommendations from the EACPR. Part II. Eur J Prev Cardiol 2012 19:1005-1033. https://www.ncbi.nlm.nih.gov/pubmed/22637741

Additional references used in this section: [9]

Physical Exam and Laboratory and Diagnostic Testing

116. Steelman GM, Westman EC: Obesity: Evaluation and Treatment Essentials. New York: Informa Healthcare 2010 117. Bays HE, Toth PP, Kris-Etherton PM, et al.: Obesity, adiposity, and dyslipidemia: a consensus statement from the National Lipid Association. J Clin Lipidol 2013 7:304-383. https://www.ncbi.nlm.nih.gov/pubmed/23890517

118. O’Connor MY, Thoreson CK, Ramsey NL, et al.: The uncertain significance of low vitamin D levels in African descent populations: a review of the bone and cardiometabolic literature. Prog Cardiovasc Dis 2013 56:261-269. https://www.ncbi.nlm.nih.gov/pubmed/24267433

119. Kim JJ, Choi YM: Dyslipidemia in women with polycystic ovary syndrome. Obstet Gynecol Sci 2013 56:137-142. https://www.ncbi.nlm.nih.gov/pubmed/24327994

120. Corona G, Rastrelli G, Monami M, et al.: Body weight loss reverts obesity-associated hypogonadotropic hypogonadism: a systematic review and meta-analysis. Eur J Endocrinol 2013 168:829-843. https://www.ncbi.nlm.nih.gov/pubmed/23482592

121. Hochberg I, Hochberg Z: Expanding the definition of hypothalamic obesity. Obes Rev 2010 11:709-721.

https://www.ncbi.nlm.nih.gov/pubmed/20233310

122. Lim SP, Arasaratnam P, Chow BJ, et al.: Obesity and the challenges of noninvasive imaging for the detection of coronary artery disease. Can J Cardiol 2015 31:223-226.  https://www.ncbi.nlm.nih.gov/pubmed/25661558

123. Garcia-Labbe D, Ruka E, Bertrand OF, et al.: Obesity and coronary artery disease: evaluation and treatment. Can J Cardiol 2015 31:184-194. https://www.ncbi.nlm.nih.gov/pubmed/25661553

124. Ginde SR, Geliebter A, Rubiano F, et al.: Air displacement plethysmography: validation in overweight and obese subjects. Obes Res 2005 13:1232-1237. https://www.ncbi.nlm.nih.gov/pubmed/16076993

125. Beam JR, Szymanski DJ: Validity of 2 skinfold calipers in estimating percent body fat of college-aged men and women. J Strength Cond Res 2010 24:3448-3456. https://www.ncbi.nlm.nih.gov/pubmed/20040894

126. Muller MJ, Bosy-Westphal A, Lagerpusch M, et al.: Use of balance methods for assessment of short-term changes in body composition. Obesity (Silver Spring) 2012 20:701-707. https://www.ncbi.nlm.nih.gov/pubmed/21869755

127. Kendler DL, Borges JL, Fielding RA, et al.: The Official Positions of the International Society for Clinical Densitometry: Indications of Use and Reporting of DXA for Body Composition. J Clin Densitom 2013 16:496-507. https://www.ncbi.nlm.nih.gov/pubmed/24090645

128. Goni L, Cuervo M, Milagro FI, et al.: Future Perspectives of Personalized Weight Loss Interventions Based on Nutrigenetic, Epigenetic, and Metagenomic Data. J Nutr 2016 https://www.ncbi.nlm.nih.gov/pubmed/26962191

129. Allison KC, Grilo CM, Masheb RM, et al.: High self-reported rates of neglect and emotional abuse, by persons with binge eating disorder and night eating syndrome. Behav Res Ther 2007 45:2874-2883. https://www.ncbi.nlm.nih.gov/pubmed/17659255

130. St-Onge MP: The role of sleep duration in the regulation of energy balance: effects on energy intakes and expenditure. J Clin Sleep Med 2013 9:73-80. https://www.ncbi.nlm.nih.gov/pubmed/23319909

Body Composition

131. Dulloo AG, Jacquet J, Solinas G, et al.: Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int J Obes (Lond) 2010 34 Suppl 2:S4-17. https://www.ncbi.nlm.nih.gov/pubmed/21151146

132. Heymsfield SB, Ebbeling CB, Zheng J, et al.: Multi-component molecular-level body composition reference methods: evolving concepts and future directions. Obes Rev 2015 16:282-294. https://www.ncbi.nlm.nih.gov/pubmed/25645009

133. Kendall KL, Fukuda DH, Hyde PN, et al.: Estimating fat-free mass in elite-level male rowers: a four-compartment model validation of laboratory and field methods. J Sports Sci 2017 35:624-633. https://www.ncbi.nlm.nih.gov/pubmed/27159216

134. Muller MJ, Braun W, Pourhassan M, et al.: Application of standards and models in body composition analysis. Proc Nutr Soc 2016 75:181-187. https://www.ncbi.nlm.nih.gov/pubmed/26541411

135. Harvard School of Public Health. Measuring Obesity: From Calipers to CAT Scans, Ten Ways to Tell Whether a Body Is Fat or Leanhttps://www.hsph.harvard.edu/obesity-prevention-source/obesity-definition/how-to-measure-body-fatness/ (Accessed August 20,2016).

136. Williams CA, Bale P: Bias and limits of agreement between hydrodensitometry, bioelectrical impedance and skinfold calipers measures of percentage body fat. Eur J Appl Physiol Occup Physiol 1998 77:271-277. https://www.ncbi.nlm.nih.gov/pubmed/9535589

137. Clarys JP, Provyn S, Marfell-Jones MJ: Cadaver studies and their impact on the understanding of human adiposity. Ergonomics 2005 48:1445-1461. https://www.ncbi.nlm.nih.gov/pubmed/16338712

138. Choi YJ: Dual-Energy X-Ray Absorptiometry: Beyond Bone Mineral Density Determination. Endocrinol Metab (Seoul) 2016 31:25-30. https://www.ncbi.nlm.nih.gov/pubmed/26996419

139. Miazgowski T, Kucharski R, Soltysiak M, et al.: Visceral fat reference values derived from healthy European men and women aged 20-30 years using GE Healthcare dual-energy x-ray absorptiometry. PLoS One 2017 12:e0180614. https://www.ncbi.nlm.nih.gov/pubmed/28683146

140. Sasai H, Brychta RJ, Wood RP, et al.: Does Visceral Fat Estimated by Dual-Energy X-ray Absorptiometry Independently Predict Cardiometabolic Risks in Adults? J Diabetes Sci Technol 2015 9:917-924. https://www.ncbi.nlm.nih.gov/pubmed/25802470

141. Sran MM, Khan KM, Keiver K, et al.: Accuracy of DXA scanning of the thoracic spine: cadaveric studies comparing BMC, areal BMD and geometric estimates of volumetric BMD against ash weight and CT measures of bone volume. Eur Spine J 2005 14:971-976. https://www.ncbi.nlm.nih.gov/pubmed/15616862

142. Chirachariyavej T, Limburanasombat S, Tiensuwan M: The relationship between bone and ash weight to body weight and body length of Thai corpses in Bangkok and central part of Thailand after cremation. J Med Assoc Thai 2007 90:1872-1878. https://www.ncbi.nlm.nih.gov/pubmed/17957933

143. Achamrah N, Colange G, Delay J, et al.: Comparison of body composition assessment by DXA and BIA according to the body mass index: A retrospective study on 3655 measures. PLoS One 2018 13:e0200465. https://www.ncbi.nlm.nih.gov/pubmed/30001381

144. Santos DA, Dawson JA, Matias CN, et al.: Reference values for body composition and anthropometric measurements in athletes. PLoS One 2014 9:e97846. https://www.ncbi.nlm.nih.gov/pubmed/24830292

145. Chiodini I, Bolland MJ: Calcium supplementation in osteoporosis: useful or harmful? Eur J Endocrinol 2018 178:D13-D25. https://www.ncbi.nlm.nih.gov/pubmed/29440373

146. Tai V, Leung W, Grey A, et al.: Calcium intake and bone mineral density: systematic review and meta-analysis. BMJ 2015 351:h4183. https://www.ncbi.nlm.nih.gov/pubmed/26420598

147. Hunter GR, Plaisance EP, Fisher G: Weight loss and bone mineral density. Curr Opin Endocrinol Diabetes Obes 2014 21:358-362. https://www.ncbi.nlm.nih.gov/pubmed/25105997

148. Warner SE, Shaw JM, Dalsky GP: Bone mineral density of competitive male mountain and road cyclists. Bone 2002 30:281-286. https://www.ncbi.nlm.nih.gov/pubmed/11792598

149. Hinton PS, Nigh P, Thyfault J: Effectiveness of resistance training or jumping-exercise to increase bone mineral density in men with low bone mass: A 12-month randomized, clinical trial. Bone 2015 79:203-212. https://www.ncbi.nlm.nih.gov/pubmed/26092649

150. Abrahin O, Rodrigues RP, Marcal AC, et al.: Swimming and cycling do not cause positive effects on bone mineral density: a systematic review. Rev Bras Reumatol Engl Ed 2016 56:345-351. https://www.ncbi.nlm.nih.gov/pubmed/27476628

151. O’Connor DP, Bray MS, McFarlin BK, et al.: Generalized equations for estimating DXA percent fat of diverse young women and men: the TIGER study. Med Sci Sports Exerc 2010 42:1959-1965. https://www.ncbi.nlm.nih.gov/pubmed/20305578

152. Bosch TA, Burruss TP, Weir NL, et al.: Abdominal body composition differences in NFL football players. J Strength Cond Res 2014 28:3313-3319. https://www.ncbi.nlm.nih.gov/pubmed/25187247

153. Silva DR, Ribeiro AS, Pavao FH, et al.: Validity of the methods to assess body fat in children and adolescents using multi-compartment models as the reference method: a systematic review. Rev Assoc Med Bras (1992) 2013 59:475-486. https://www.ncbi.nlm.nih.gov/pubmed/24119380

154. Fields DA, Hunter GR, Goran MI: Validation of the BOD POD with hydrostatic weighing: influence of body clothing. Int J Obes Relat Metab Disord 2000 24:200-205. https://www.ncbi.nlm.nih.gov/pubmed/10702771

155. Smith S, Madden AM: Body composition and functional assessment of nutritional status in adults: a narrative review of imaging, impedance, strength and functional techniques. J Hum Nutr Diet 2016 29:714-732. https://www.ncbi.nlm.nih.gov/pubmed/27137882

156. Rotella CM, Dicembrini I: Measurement of body composition as a surrogate evaluation of energy balance in obese patients. World J Methodol 2015 5:1-9. https://www.ncbi.nlm.nih.gov/pubmed/25825693

157. Bosy-Westphal A, Jensen B, Braun W, et al.: Quantification of whole-body and segmental skeletal muscle mass using phase-sensitive 8-electrode medical bioelectrical impedance devices. Eur J Clin Nutr 2017 71:1061-1067. https://www.ncbi.nlm.nih.gov/pubmed/28327564

158. Day K, Kwok A, Evans A, et al.: Comparison of a Bioelectrical Impedance Device against the Reference Method Dual Energy X-Ray Absorptiometry and Anthropometry for the Evaluation of Body Composition in Adults. Nutrients 2018 10:https://www.ncbi.nlm.nih.gov/pubmed/30308974

159. Lee K, Lee S, Kim YJ, et al.: Waist circumference, dual-energy X-ray absortiometrically measured abdominal adiposity, and computed tomographically derived intra-abdominal fat area on detecting metabolic risk factors in obese women. Nutrition 2008 24:625-631. https://www.ncbi.nlm.nih.gov/pubmed/18485667

160. Alvero-Cruz JR, Garcia-Romero JC, Carrillo de Albornoz-Gil M, et al.: Longitudinal validity of abdominal adiposity assessment by regional bioelectrical impedance. Eur J Clin Nutr 2018 72:1055-1057.

161. International Atomic Energy Agency. IAEA Human Health Series No. 12 Introduction To Body Composition Assessment Using The Deuterium Dilution Technique With Analysis Of Saliva Samples By Fourier Transform Infrared Spectrometry (2010) http://wwwpub.iaea.org/MTCD/publications/PDF/Pub1450_web.pdf (Accessed August 20, 2016).

162. Heymsfield SB, Adamek M, Gonzalez MC, et al.: Assessing skeletal muscle mass: historical overview and state of the art. J Cachexia Sarcopenia Muscle 2014 5:9-18. https://www.ncbi.nlm.nih.gov/pubmed/24532493

163. Seabolt LA, Welch EB, Silver HJ: Imaging methods for analyzing body composition in human obesity and cardiometabolic disease. Ann N Y Acad Sci 2015 1353:41-59. https://www.ncbi.nlm.nih.gov/pubmed/26250623

164. Fosbol MO, Zerahn B: Contemporary methods of body composition measurement. Clin Physiol Funct Imaging 2015 35:81-97. https://www.ncbi.nlm.nih.gov/pubmed/24735332

Additional references used in this section: [26][37][124][126]

Energy Expenditure

165. Ruggiero C, Ferrucci L: The endeavor of high maintenance homeostasis: resting metabolic rate and the legacy of longevity. J Gerontol A Biol Sci Med Sci 2006 61:466-471. https://www.ncbi.nlm.nih.gov/pubmed/16720742

166. Donahoo WT, Levine JA, Melanson EL: Variability in energy expenditure and its components. Curr Opin Clin Nutr Metab Care 2004 7:599-605. https://www.ncbi.nlm.nih.gov/pubmed/15534426

167. Chung N, Park MY, Kim J, et al.: Non-exercise activity thermogenesis (NEAT): a component of total daily energy expenditure. J Exerc Nutrition Biochem 2018 22:23-30.

168. Hamasaki H, Yanai H, Mishima S, et al.: Correlations of non-exercise activity thermogenesis to metabolic parameters in Japanese patients with type 2 diabetes. Diabetol Metab Syndr 2013 5:26. https://www.ncbi.nlm.nih.gov/pubmed/23711224

169. Hajna S, Ross NA, Dasgupta K: Steps, moderate-to-vigorous physical activity, and cardiometabolic profiles. Prev Med 2017 https://www.ncbi.nlm.nih.gov/pubmed/29126915

170. Piercy KL, Troiano RP, Ballard RM, et al.: The Physical Activity Guidelines for Americans. Jama 2018 320:2020-2028.

171. Flatt JP: Differences in basal energy expenditure and obesity. Obesity (Silver Spring) 2007 15:2546-2548. https://www.ncbi.nlm.nih.gov/pubmed/18070743

172. Pourhassan M, Bosy-Westphal A, Schautz B, et al.: Impact of body composition during weight change on resting energy expenditure and homeostasis model assessment index in overweight nonsmoking adults. Am J Clin Nutr 2014 99:779-791. https://www.ncbi.nlm.nih.gov/pubmed/24500156

173. Gallagher D, Belmonte D, Deurenberg P, et al.: Organ-tissue mass measurement allows modeling of REE and metabolically active tissue mass. Am J Physiol 1998 275:E249-258.  https://www.ncbi.nlm.nih.gov/pubmed/9688626

174. Wang Z, Ying Z, Bosy-Westphal A, et al.: Evaluation of specific metabolic rates of major organs and tissues: comparison between men and women. Am J Hum Biol 2011 23:333-338. https://www.ncbi.nlm.nih.gov/pubmed/21484913

175. Jequier E, Acheson K, Schutz Y: Assessment of energy expenditure and fuel utilization in man. Annu Rev Nutr 1987 7:187-208. https://www.ncbi.nlm.nih.gov/pubmed/3300732

176. Psota T, Chen KY: Measuring energy expenditure in clinical populations: rewards and challenges. Eur J Clin Nutr 2013 67:436-442. https://www.ncbi.nlm.nih.gov/pubmed/23443826

177. Sabounchi NS, Rahmandad H, Ammerman A: Best-fitting prediction equations for basal metabolic rate: informing obesity interventions in diverse populations. Int J Obes (Lond) 2013 37:1364-1370. https://www.ncbi.nlm.nih.gov/pubmed/23318720

178. Even PC, Nadkarni NA: Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. Am J Physiol Regul Integr Comp Physiol 2012 303:R459-476. https://www.ncbi.nlm.nih.gov/pubmed/22718809

179. Ellis AC, Hyatt TC, Hunter GR, et al.: Respiratory quotient predicts fat mass gain in premenopausal women. Obesity (Silver Spring) 2010 18:2255-2259. https://www.ncbi.nlm.nih.gov/pubmed/20448540

180. Park J, Kazuko IT, Kim E, et al.: Estimating free-living human energy expenditure: Practical aspects of the doubly labeled water method and its applications. Nutr Res Pract 2014 8:241-248. https://www.ncbi.nlm.nih.gov/pubmed/24944767

181. Byham-Gray L, Parrott JS, Ho WY, et al.: Development of a predictive energy equation for maintenance hemodialysis patients: a pilot study. J Ren Nutr 2014 24:32-41. https://www.ncbi.nlm.nih.gov/pubmed/24355819

182. Evenson KR, Goto MM, Furberg RD: Systematic review of the validity and reliability of consumer-wearable activity trackers. Int J Behav Nutr Phys Act 2015 12:159. https://www.ncbi.nlm.nih.gov/pubmed/26684758

Additional references used in this section: [156]

Concomitant Medications

183. Apovian CM, Aronne LJ, Bessesen DH, et al.: Pharmacological management of obesity: an endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2015 100:342-362. https://www.ncbi.nlm.nih.gov/pubmed/25590212

184. Bays H: From victim to ally: the kidney as an emerging target for the treatment of diabetes mellitus. Curr Med Res Opin 2009 25:671-681. https://www.ncbi.nlm.nih.gov/pubmed/19232040

185. Domecq JP, Prutsky G, Leppin A, et al.: Clinical review: Drugs commonly associated with weight change: a systematic review and metaanalysis. J Clin Endocrinol Metab 2015 100:363-370. https://www.ncbi.nlm.nih.gov/pubmed/25590213

186. DeFronzo RA, Buse JB, Kim T, et al.: Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials. Diabetologia 2016 59:1645-1654. https://www.ncbi.nlm.nih.gov/pubmed/27216492

187. Mahmood K, Naeem M, Rahimnajjad NA: Metformin: the hidden chronicles of a magic drug. Eur J Intern Med 2013 24:20-26. https://www.ncbi.nlm.nih.gov/pubmed/23177353

188. Johnson NP: Metformin use in women with polycystic ovary syndrome. Ann Transl Med 2014 2:56. https://www.ncbi.nlm.nih.gov/pubmed/25333031

189. Anisimov VN: Do metformin a real anticarcinogen? A critical reappraisal of experimental data. Ann Transl Med 2014 2:60. https://www.ncbi.nlm.nih.gov/pubmed/25333035

190. Scinta W, Bayes H, Smith N: Insulin Resistance and Hunger in Childhood Obesity: A Patient and Physician’s Perspective. Adv Ther 2017 34:2386-2391. https://www.ncbi.nlm.nih.gov/pubmed/28884449

191. Astrup A, Caterson I, Zelissen P, et al.: Topiramate: long-term maintenance of weight loss induced by a low-calorie diet in obese subjects. Obes Res 2004 12:1658-1669. https://www.ncbi.nlm.nih.gov/pubmed/15536230

192. Ikeda H, Yonemochi N, Ardianto C, et al.: Pregabalin increases food intake through dopaminergic systems in the hypothalamus. Brain Res 2018 1701:219-226. https://www.ncbi.nlm.nih.gov/pubmed/30244110

193. Bostwick JM: A generalist’s guide to treating patients with depression with an emphasis on using side effects to tailor antidepressant therapy. Mayo Clin Proc 2010 85:538-550. https://www.ncbi.nlm.nih.gov/pubmed/20431115

194. Hasnain M, Vieweg WV: Weight considerations in psychotropic drug prescribing and switching. Postgrad Med 2013 125:117-129. https://www.ncbi.nlm.nih.gov/pubmed/24113670

195. Hasnain M, Vieweg WV, Hollett B: Weight gain and glucose dysregulation with second-generation antipsychotics and antidepressants: a review for primary care physicians. Postgrad Med 2012 124:154-167. https://www.ncbi.nlm.nih.gov/pubmed/22913904

196. Baldwin DS, Chrones L, Florea I, et al.: The safety and tolerability of vortioxetine: Analysis of data from randomized placebo-controlled trials and open-label extension studies. J Psychopharmacol 2016 30:242-252. https://www.ncbi.nlm.nih.gov/pubmed/26864543

197. Newcomer JW, Eriksson H, Zhang P, et al.: Changes in metabolic parameters and body weight in brexpiprazole-treated patients with acute schizophrenia: pooled analyses of phase 3 clinical studies. Curr Med Res Opin 2018 34:2197-2205. https://www.ncbi.nlm.nih.gov/pubmed/29985680

198. Parikh NB, Robinson DM, Clayton AH: Clinical role of brexpiprazole in depression and schizophrenia. Ther Clin Risk Manag 2017 13:299-306. https://www.ncbi.nlm.nih.gov/pubmed/28331332

199. Uguz F, Sahingoz M, Gungor B, et al.: Weight gain and associated factors in patients using newer antidepressant drugs. Gen Hosp Psychiatry 2015 37:46-48.200. Cutler AJ, Durgam S, Wang Y, et al.: Evaluation of the long-term safety and tolerability of cariprazine in patients with schizophrenia: results from a 1-year open-label study. CNS Spectr 2018 23:39-50. https://www.ncbi.nlm.nih.gov/pubmed/28478771

201. Smith ME, Lee JS, Bonham A, et al.: Effect of new persistent opioid use on physiologic and psychologic outcomes following bariatric surgery. Surg Endosc 2018 202. Christinat A, Di Lascio S, Pagani O: Hormonal therapies in young breast cancer patients: when, what and for how long? J Thorac Dis 2013 5 Suppl 1:S36-46. https://www.ncbi.nlm.nih.gov/pubmed/23819026

203. Lake JE, Currier JS: Switching antiretroviral therapy to minimize metabolic complications. HIV Ther 2010 4:693-711. https://www.ncbi.nlm.nih.gov/pubmed/22171239

204. Ighani A, Georgakopoulos JR, Zhou LL, et al.: Efficacy and Safety of Apremilast Monotherapy for Moderate to Severe Psoriasis: Retrospective Study. J Cutan Med Surg 2018 22:290-296. https://www.ncbi.nlm.nih.gov/pubmed/29373924

Additional references used in this section: [22][43][161]

Nutrition

205. U.S. Department of Agriculture. https://fnic.nal.usda.gov/how-many-calories-are-one-gram-fat-carbohydrate-or-protein. Food and Nutrition Information Center (Accessed August 20, 2016).

206. Sacks FM, Lichtenstein AH, Wu JHY, et al.: Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association. Circulation 2017 136:e1-e23. https://www.ncbi.nlm.nih.gov/pubmed/28620111

207. Hernandez-Alonso P, Camacho-Barcia L, Bullo M, et al.: Nuts and Dried Fruits: An Update of Their Beneficial Effects on Type 2 Diabetes. Nutrients 2017 9:https://www.ncbi.nlm.nih.gov/pubmed/28657613

208. Gonzalez-Campoy JM, St Jeor ST, Castorino K, et al.: Clinical practice guidelines for healthy eating for the prevention and treatment of metabolic and endocrine diseases in adults: cosponsored by the American Association of Clinical Endocrinologists/the American College of Endocrinology and the Obesity Society. Endocr Pract 2013 19 Suppl 3:1-82. https://www.ncbi.nlm.nih.gov/pubmed/24129260

209. Clifton PM: Dietary treatment for obesity. Nat Clin Pract Gastroenterol Hepatol 2008 5:672-681. https://www.ncbi.nlm.nih.gov/pubmed/18852729

210. Brown T, Avenell A, Edmunds LD, et al.: Systematic review of long-term lifestyle interventions to prevent weight gain and morbidity in adults. Obes Rev 2009 10:627-638. https://www.ncbi.nlm.nih.gov/pubmed/19754634

211. Tsai AG, Wadden TA: Systematic review: an evaluation of major commercial weight loss programs in the United States. Ann Intern Med 2005 142:56-66. https://www.ncbi.nlm.nih.gov/pubmed/15630109

212. Westman EC, Yancy WS, Jr., Mavropoulos JC, et al.: The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr Metab (Lond) 2008 5:36. https://www.ncbi.nlm.nih.gov/pubmed/19099589

213. Westman EC, Feinman RD, Mavropoulos JC, et al.: Low-carbohydrate nutrition and metabolism. Am J Clin Nutr 2007 86:276-284. https://www.ncbi.nlm.nih.gov/pubmed/17684196

214. Volek JS, Phinney SD, Forsythe CE, et al.: Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. Lipids 2009 44:297-309. https://www.ncbi.nlm.nih.gov/pubmed/19082851

215. Foster GD, Wyatt HR, Hill JO, et al.: Weight and metabolic outcomes after 2 years on a low-carbohydrate versus low-fat diet: a randomized trial. Ann Intern Med 2010 153:147-157. https://www.ncbi.nlm.nih.gov/pubmed/20679559

216. Tirosh A, Golan R, Harman-Boehm I, et al.: Renal function following three distinct weight loss dietary strategies during 2 years of a randomized controlled trial. Diabetes Care 2013 36:2225-2232. https://www.ncbi.nlm.nih.gov/pubmed/23690533

217. Lutas A, Yellen G: The ketogenic diet: metabolic influences on brain excitability and epilepsy. Trends Neurosci 2013 36:32-40. https://www.ncbi.nlm.nih.gov/pubmed/23228828

218. Ebbeling CB, Feldman HA, Klein GL, et al.: Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: randomized trial. BMJ 2018 363:k4583. https://www.ncbi.nlm.nih.gov/pubmed/30429127

219. Schwingshackl L, Hoffmann G: Long-term effects of low-fat diets either low or high in protein on cardiovascular and metabolic risk factors: a systematic review and meta-analysis. Nutr J 2013 12:48. https://www.ncbi.nlm.nih.gov/pubmed/23587198

220. Meckling KA, O’Sullivan C, Saari D: Comparison of a low-fat diet to a low-carbohydrate diet on weight loss, body composition, and risk factors for diabetes and cardiovascular disease in free-living, overweight men and women. J Clin Endocrinol Metab 2004 89:2717-2723. https://www.ncbi.nlm.nih.gov/pubmed/15181047

221. Mulholland Y, Nicokavoura E, Broom J, et al.: Very-low-energy diets and morbidity: a systematic review of longer-term evidence. Br J Nutr 2012 108:832-851. https://www.ncbi.nlm.nih.gov/pubmed/22800763

222. Johansson K, Sundstrom J, Marcus C, et al.: Risk of symptomatic gallstones and cholecystectomy after a very-low-calorie diet or lowcalorie diet in a commercial weight loss program: 1-year matched cohort study. Int J Obes (Lond) 2014 38:279-284. https://www.ncbi.nlm.nih.gov/pubmed/23736359

223. Teegala SM, Willett WC, Mozaffarian D: Consumption and health effects of trans fatty acids: a review. J AOAC Int 2009 92:1250-1257. https://www.ncbi.nlm.nih.gov/pubmed/19916363

224. Nestel P: Trans fatty acids: are its cardiovascular risks fully appreciated? Clin Ther 2014 36:315-321. https://www.ncbi.nlm.nih.gov/pubmed/24636816

225. Shen W, McIntosh MK: Nutrient Regulation: Conjugated Linoleic Acid’s Inflammatory and Browning Properties in Adipose Tissue. Annu Rev Nutr 2016 36:183-210. https://www.ncbi.nlm.nih.gov/pubmed/27431366

226. Dehghan M, Mente A, Rangarajan S, et al.: Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): a prospective cohort study. Lancet 2018 392:2288-2297. https://www.ncbi.nlm.nih.gov/pubmed/30217460

227. Lambert EA, Phillips S, Belski R, et al.: Endothelial Function in Healthy Young Individuals Is Associated with Dietary Consumption of Saturated Fat. Front Physiol 2017 8:876. https://www.ncbi.nlm.nih.gov/pubmed/29170641

228. Dow CA, Stauffer BL, Greiner JJ, et al.: Influence of dietary saturated fat intake on endothelial fibrinolytic capacity in adults. Am J Cardiol 2014 114:783-788. https://www.ncbi.nlm.nih.gov/pubmed/25052545

229. Hall WL: Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function. Nutr Res Rev 2009 22:18-38. https://www.ncbi.nlm.nih.gov/pubmed/19243668

230. Tapsell LC: Fermented dairy food and CVD risk. Br J Nutr 2015 113 Suppl 2:S131-135. https://www.ncbi.nlm.nih.gov/pubmed/26148916

231. Vieira SA, McClements DJ, Decker EA: Challenges of utilizing healthy fats in foods. Adv Nutr 2015 6:309S-317S. https://www.ncbi.nlm.nih.gov/pubmed/25979504

232. Jaarin K, Kamisah Y: Repeatedly Heated Vegetable Oils and Lipid Peroxidation https://www.intechopen.com/books/lipidperoxidation/repeatedly-heated-vegetable-oils-and-lipid-peroxidation (Accessed January 6, 2019). Lipid Peroxidation Chapter 10 2012

233. Przybylski O, Aladedunye FA: Formation of trans fats during food preparation. Can J Diet Pract Res 2012 73:98-101. https://www.ncbi.nlm.nih.gov/pubmed/22668846

234. Wang DD, Li Y, Chiuve SE, et al.: Association of Specific Dietary Fats With Total and Cause-Specific Mortality. JAMA Intern Med 2016 176:1134-1145. https://www.ncbi.nlm.nih.gov/pubmed/27379574

235. Li Y, Hruby A, Bernstein AM, et al.: Saturated Fats Compared With Unsaturated Fats and Sources of Carbohydrates in Relation to Risk of Coronary Heart Disease: A Prospective Cohort Study. J Am Coll Cardiol 2015 66:1538-1548. https://www.ncbi.nlm.nih.gov/pubmed/26429077

236. Beulen Y, Martinez-Gonzalez MA, van de Rest O, et al.: Quality of Dietary Fat Intake and Body Weight and Obesity in a Mediterranean Population: Secondary Analyses within the PREDIMED Trial. Nutrients 201810:https://www.ncbi.nlm.nih.gov/pubmed/30572588

237. Reynolds A, Mann J, Cummings J, et al.: Carbohydrate quality and human health: a series of systematic reviews and metaanalyses. The Lancet https://doi.org/10.1016/S0140-6736(18)31809-9

238. Clifton PM, Keogh JB: A systematic review of the effect of dietary saturated and polyunsaturated fat on heart disease. Nutr Metab Cardiovasc Dis 2017 27:1060-1080. https://www.ncbi.nlm.nih.gov/pubmed/29174025

239. Ferro-Luzzi A, Sette S: The Mediterranean Diet: an attempt to define its present and past composition. Eur J Clin Nutr 1989 43 Suppl 2:13-29. https://www.ncbi.nlm.nih.gov/pubmed/2689161

240. Fito M, Konstantinidou V: Nutritional Genomics and the Mediterranean Diet’s Effects on Human Cardiovascular Health. Nutrients 2016 8:218. https://www.ncbi.nlm.nih.gov/pubmed/27089360

241. Estruch R, Ros E, Salas-Salvado J, et al.: Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 2013 368:1279-1290. https://www.ncbi.nlm.nih.gov/pubmed/23432189

242. Kris-Etherton P, Eckel RH, Howard BV, et al.: AHA Science Advisory: Lyon Diet Heart Study. Benefits of a Mediterranean-style, National Cholesterol Education Program/American Heart Association Step I Dietary Pattern on Cardiovascular Disease. Circulation 2001 103:1823-1825. https://www.ncbi.nlm.nih.gov/pubmed/11282918

243. Expert Panel on Detection E, Treatment of High Blood Cholesterol in A: Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001 285:2486-2497. https://www.ncbi.nlm.nih.gov/pubmed/11368702

244. U.S. Department Of Health And Human Services, National Institutes of Health, National Heart, Lung, and Blood Institute. Your guide to lowering your cholesterol with TLC. NIH Publication No. 06–5235. Bethesda, MD: National Heart, Lung, and Blood Institute; 2005. 245. Scrutinio D: The potential of lifestyle changes for improving the clinical outcome of patients with coronary heart disease: mechanisms of benefit and clinical results. Rev Recent Clin Trials 2010 5:1-13. https://www.ncbi.nlm.nih.gov/pubmed/20205683

246. Gibson AA, Seimon RV, Lee CM, et al.: Do ketogenic diets really suppress appetite? A systematic review and meta-analysis. Obes Rev 2015 16:64-76. https://www.ncbi.nlm.nih.gov/pubmed/25402637

247. Bueno NB, de Melo IS, de Oliveira SL, et al.: Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a metaanalysis of randomised controlled trials. Br J Nutr 2013 110:1178-1187. https://www.ncbi.nlm.nih.gov/pubmed/23651522

248. Mansoor N, Vinknes KJ, Veierod MB, et al.: Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors: a meta-analysis of randomised controlled trials. Br J Nutr 2016 115:466-479. https://www.ncbi.nlm.nih.gov/pubmed/26768850

249. Ornish D, Brown SE, Scherwitz LW, et al.: Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial. Lancet 1990 336:129-133. https://www.ncbi.nlm.nih.gov/pubmed/1973470

250. Gardner CD, Kiazand A, Alhassan S, et al.: Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z Weight Loss Study: a randomized trial. JAMA 2007 297:969-977. https://www.ncbi.nlm.nih.gov/pubmed/17341711

251. Ornish D, Scherwitz LW, Billings JH, et al.: Intensive lifestyle changes for reversal of coronary heart disease. JAMA 1998 280:2001-2007. https://www.ncbi.nlm.nih.gov/pubmed/9863851

252. U.S. Department of Health and Human Services, National Institutes of Health, National Heart, Lung, and Blood Institute. Your guide to lowering your blood pressure with DASH. NIH Publication No. 06-4082. Bethesda, MD: National Heart, Lung, and Blood Institute; 2006.

253. Appel LJ, Sacks FM, Carey VJ, et al.: Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA 2005 294:2455-2464. https://www.ncbi.nlm.nih.gov/pubmed/16287956

254. Manheimer EW, van Zuuren EJ, Fedorowicz Z, et al.: Paleolithic nutrition for metabolic syndrome: systematic review and meta-analysis. Am J Clin Nutr 2015 102:922-932. https://www.ncbi.nlm.nih.gov/pubmed/26269362

255. Jonsson T, Granfeldt Y, Lindeberg S, et al.: Subjective satiety and other experiences of a Paleolithic diet compared to a diabetes diet in patients with type 2 diabetes. Nutr J 2013 12:105. https://www.ncbi.nlm.nih.gov/pubmed/23890471

256. Jonsson T, Granfeldt Y, Ahren B, et al.: Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: a randomized cross-over pilot study. Cardiovasc Diabetol 2009 8:35. https://www.ncbi.nlm.nih.gov/pubmed/19604407

257. Craig WJ: Health effects of vegan diets. Am J Clin Nutr 2009 89:1627S-1633S. https://www.ncbi.nlm.nih.gov/pubmed/19279075

258. Dinu M, Abbate R, Gensini GF, et al.: Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr 2016 0. https://www.ncbi.nlm.nih.gov/pubmed/26853923

259. Satija A, Bhupathiraju SN, Spiegelman D, et al.: Healthful and Unhealthful Plant-Based Diets and the Risk of Coronary Heart Disease in U.S. Adults. J Am Coll Cardiol 2017 70:411-422. https://www.ncbi.nlm.nih.gov/pubmed/28728684

260. Key TJ, Fraser GE, Thorogood M, et al.: Mortality in vegetarians and nonvegetarians: detailed findings from a collaborative analysis of 5 prospective studies. Am J Clin Nutr 1999 70:516s-524s.

261. Kim H, Caulfield LE, Rebholz CM: Healthy Plant-Based Diets Are Associated with Lower Risk of All-Cause Mortality in US Adults. J Nutr 2018 148:624-631.

262. Tharrey M, Mariotti F, Mashchak A, et al.: Patterns of plant and animal protein intake are strongly associated with cardiovascular mortality: the Adventist Health Study-2 cohort. Int J Epidemiol 2018 47:1603-1612.

263. Kahleova H, Levin S, Barnard N: Cardio-Metabolic Benefits of Plant-Based Diets. Nutrients 2017 9:

264. Huang RY, Huang CC, Hu FB, et al.: Vegetarian Diets and Weight Reduction: a Meta-Analysis of Randomized Controlled Trials. J Gen Intern Med 2016 31:109-116.

265. Borude S: Which Is a Good Diet-Veg or Non-veg? Faith-Based Vegetarianism for Protection From Obesity-a Myth or Actuality? Obes Surg 2019

266. Gabel K, Hoddy KK, Haggerty N, et al.: Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutr Healthy Aging 2018 4:345-353. https://www.ncbi.nlm.nih.gov/pubmed/29951594

267. Antoni R, Johnston KL, Collins AL, et al.: Effects of intermittent fasting on glucose and lipid metabolism. Proc Nutr Soc 2017 76:361-368. https://www.ncbi.nlm.nih.gov/pubmed/28091348

268. Hutchison AT, Liu B, Wood RE, et al.: Effects of Intermittent Versus Continuous Energy Intakes on Insulin Sensitivity and Metabolic Risk in Women with Overweight. Obesity (Silver Spring) 2019 27:50-58. https://www.ncbi.nlm.nih.gov/pubmed/30569640

269. Stice E, Davis K, Miller NP, et al.: Fasting increases risk for onset of binge eating and bulimic pathology: a 5-year prospective study. J Abnorm Psychol 2008 117:941-946. https://www.ncbi.nlm.nih.gov/pubmed/19025239

270. Kerndt PR, Naughton JL, Driscoll CE, et al.: Fasting: the history, pathophysiology and complications. West J Med 1982 137:379-399. https://www.ncbi.nlm.nih.gov/pubmed/6758355

271. Harris L, Hamilton S, Azevedo LB, et al.: Intermittent fasting interventions for treatment of overweight and obesity in adults: a systematic review and meta-analysis. JBI Database System Rev Implement Rep 2018 16:507-547. https://www.ncbi.nlm.nih.gov/pubmed/29419624 Additional references used in this section: [117]

Physical Activity

272. Warburton DE, Nicol CW, Bredin SS: Health benefits of physical activity: the evidence. CMAJ 2006 174:801-809. https://www.ncbi.nlm.nih.gov/pubmed/16534088

273. Stanford KI, Middelbeek RJ, Goodyear LJ: Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations. Diabetes 2015 64:2361-2368. https://www.ncbi.nlm.nih.gov/pubmed/26050668

274. Jeremic N, Chaturvedi P, Tyagi SC: Browning of White Fat: Novel Insight Into Factors, Mechanisms, and Therapeutics. J Cell Physiol 2017 232:61-68. https://www.ncbi.nlm.nih.gov/pubmed/27279601

275. Jakicic JM, Davis KK: Obesity and physical activity. Psychiatr Clin North Am 2011 34:829-840. https://www.ncbi.nlm.nih.gov/pubmed/22098807

276. Gomez-Pinilla F, Hillman C: The influence of exercise on cognitive abilities. Compr Physiol 2013 3:403-428. https://www.ncbi.nlm.nih.gov/pubmed/23720292

277. Fletcher GF, Landolfo C, Niebauer J, et al.: Promoting Physical Activity and Exercise: JACC Health Promotion Series. J Am Coll Cardiol 2018 72:1622-1639.

278. Meriwether RA, Lee JA, Lafleur AS, et al.: Physical activity counseling. Am Fam Physician 2008 77:1129-1136. https://www.ncbi.nlm.nih.gov/pubmed/18481560

279. Vincent HK, Raiser SN, Vincent KR: The aging musculoskeletal system and obesity-related considerations with exercise. Ageing Res Rev 2012 11:361-373. https://www.ncbi.nlm.nih.gov/pubmed/22440321

280. Parr EB, Coffey VG, Hawley JA: ‘Sarcobesity’: a metabolic conundrum. Maturitas 2013 74:109-113. https://www.ncbi.nlm.nih.gov/pubmed/23201324

281. Strasser B: Physical activity in obesity and metabolic syndrome. Ann N Y Acad Sci 2013 1281:141-159. https://www.ncbi.nlm.nih.gov/pubmed/23167451

282. Carlson SA, Fulton JE, Schoenborn CA, et al.: Trend and prevalence estimates based on the 2008 Physical Activity Guidelines for Americans. Am J Prev Med 2010 39:305-313.  https://www.ncbi.nlm.nih.gov/pubmed/20837280

283. Garland T, Jr., Schutz H, Chappell MA, et al.: The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. J Exp Biol 2011 214:206-229. https://www.ncbi.nlm.nih.gov/pubmed/21177942

284. Ng SW, Popkin BM: Time use and physical activity: a shift away from movement across the globe. Obes Rev 2012 13:659-680. https://www.ncbi.nlm.nih.gov/pubmed/22694051

285. Bushman BA: Determining the I (Intensity) for a FITT-VP Aerobic Exercise Prescription. ACSM’s Health & Fitness Journal 2014 18:4-7. http://journals.lww.com/acsm-healthfitness/Fulltext/2014/05000/Determining_the_I__Intensity__for_a_FITT_VP.4.aspx

286. Zaleski AL, Taylor BA, Panza GA, et al.: Coming of Age: Considerations in the Prescription of Exercise for Older Adults. Methodist Debakey Cardiovasc J 2016 12:98-104.

287. Lakoski SG, Barlow CE, Farrell SW, et al.: Impact of body mass index, physical activity, and other clinical factors on cardiorespiratory fitness (from the Cooper Center longitudinal study). Am J Cardiol 2011 108:34-39. https://www.ncbi.nlm.nih.gov/pubmed/21529738

288. Jette M, Sidney K, Blumchen G: Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol 1990 13:555-565. https://www.ncbi.nlm.nih.gov/pubmed/2204507

289. Van Camp CM, Hayes LB: Assessing and increasing physical activity. J Appl Behav Anal 2012 45:871-875. https://www.ncbi.nlm.nih.gov/pubmed/23322945

290. Butte NF, Ekelund U, Westerterp KR: Assessing physical activity using wearable monitors: measures of physical activity. Med Sci Sports Exerc 2012 44:S5-12. https://www.ncbi.nlm.nih.gov/pubmed/22157774

291. Mercer K, Li M, Giangregorio L, et al.: Behavior Change Techniques Present in Wearable Activity Trackers: A Critical Analysis. JMIR Mhealth Uhealth 2016 4:e40. https://www.ncbi.nlm.nih.gov/pubmed/27122452

292. Allen LN, Christie GP: The Emergence of Personalized Health Technology. J Med Internet Res 2016 18:e99. https://www.ncbi.nlm.nih.gov/pubmed/27165944

Additional references used in this section: [182]

Motivational Interviewing

293. Ries AV, Blackman LT, Page RA, et al.: Goal setting for health behavior change: evidence from an obesity intervention for rural low-income women. Rural Remote Health 2014 14:2682. https://www.ncbi.nlm.nih.gov/pubmed/24785265

294. Giannisi F, Pervanidou P, Michalaki E, et al.: Parental readiness to implement life-style behaviour changes in relation to children’s excess weight. J Paediatr Child Health 2014 50:476-481. https://www.ncbi.nlm.nih.gov/pubmed/24612057

295. Tyler DO, Horner SD: Family-centered collaborative negotiation: a model for facilitating behavior change in primary care. J Am Acad Nurse Pract 2008 20:194-203. https://www.ncbi.nlm.nih.gov/pubmed/18387016

296. Miller WR, Rose GS: Toward a theory of motivational interviewing. Am Psychol 2009 64:527-537. https://www.ncbi.nlm.nih.gov/pubmed/19739882

297. Teixeira PJ, Silva MN, Mata J, et al.: Motivation, self-determination, and long-term weight control. Int J Behav Nutr Phys Act 2012 9:22. https://www.ncbi.nlm.nih.gov/pubmed/22385818

298. Pollak KI, Alexander SC, Tulsky JA, et al.: Physician empathy and listening: associations with patient satisfaction and autonomy. J Am Board Fam Med 2011 24:665-672. https://www.ncbi.nlm.nih.gov/pubmed/22086809

299. Williams DM, Rhodes RE: The confounded self-efficacy construct: conceptual analysis and recommendations for future research. Health Psychol Rev 2016 10:113-128. https://www.ncbi.nlm.nih.gov/pubmed/25117692

300. Westra HA, Aviram A: Core skills in motivational interviewing. Psychotherapy (Chic) 2013 50:273-278. https://www.ncbi.nlm.nih.gov/pubmed/24000834

301. Pollak KI, Coffman CJ, Alexander SC, et al.: Weight’s up? Predictors of weight-related communication during primary care visits with overweight adolescents. Patient Educ Couns 2014 96:327-332. https://www.ncbi.nlm.nih.gov/pubmed/25130793

302. Pantalon MV, Sledge WH, Bauer SF, et al.: Important medical decisions: Using brief motivational interviewing to enhance patients’ autonomous decision-making. J Psychiatr Pract 2013 19:98-108. https://www.ncbi.nlm.nih.gov/pubmed/23507811

303. Codern-Bove N, Pujol-Ribera E, Pla M, et al.: Motivational interviewing interactions and the primary health care challenges presented by smokers with low motivation to stop smoking: a conversation analysis. BMC Public Health 2014 14:1225. https://www.ncbi.nlm.nih.gov/pubmed/25427643

304. Williams AA, Wright KS: Engaging families through motivational interviewing. Pediatr Clin North Am 2014 61:907-921. https://www.ncbi.nlm.nih.gov/pubmed/25242705

305. Resnicow K, McMaster F: Motivational Interviewing: moving from why to how with autonomy support. Int J Behav Nutr Phys Act 2012 9:19. https://www.ncbi.nlm.nih.gov/pubmed/22385702

306. Miller ST, Oates VJ, Brooks MA, et al.: Preliminary efficacy of group medical nutrition therapy and motivational interviewing among obese African American women with type 2 diabetes: a pilot study. J Obes 2014 2014:345941. https://www.ncbi.nlm.nih.gov/pubmed/25243082

307. Elwyn G, Dehlendorf C, Epstein RM, et al.: Shared decision making and motivational interviewing: achieving patient-centered care across the spectrum of health care problems. Ann Fam Med 2014 12:270-275. https://www.ncbi.nlm.nih.gov/pubmed/24821899

308. Carcone AI, Naar-King S, Brogan KE, et al.: Provider communication behaviors that predict motivation to change in black adolescents with obesity. J Dev Behav Pediatr 2013 34:599-608. https://www.ncbi.nlm.nih.gov/pubmed/24131883

309. Windham ME, Hastings ES, Anding R, et al.: “Teens Talk Healthy Weight”: the impact of a motivational digital video disc on parental knowledge of obesity-related diseases in an adolescent clinic. J Acad Nutr Diet 2014 114:1611-1618. https://www.ncbi.nlm.nih.gov/pubmed/24882205

310. Saelens BE, Lozano P, Scholz K: A randomized clinical trial comparing delivery of behavioral pediatric obesity treatment using standard and enhanced motivational approaches. J Pediatr Psychol 2013 38:954-964. https://www.ncbi.nlm.nih.gov/pubmed/23902797

311. Kushner RF, Ryan DH: Assessment and lifestyle management of patients with obesity: clinical recommendations from systematic reviews. JAMA 2014 312:943-952. https://www.ncbi.nlm.nih.gov/pubmed/25182103

312. Kisely S, Ligate L, Roy MA, et al.: Applying Motivational Interviewing to the initiation of long-acting injectable atypical antipsychotics. Australas Psychiatry 2012 20:138-142. https://www.ncbi.nlm.nih.gov/pubmed/22467557

313. Goldberg JH, Kiernan M: Innovative techniques to address retention in a behavioral weight-loss trial. Health Educ Res 2005 20:439-447. https://www.ncbi.nlm.nih.gov/pubmed/15598664

314. Miller NH: Motivational interviewing as a prelude to coaching in healthcare settings. J Cardiovasc Nurs 2010 25:247-251. https://www.ncbi.nlm.nih.gov/pubmed/20386250

315. Vallis M, Piccinini-Vallis H, Sharma AM, et al.: Clinical review: modified 5 As: minimal intervention for obesity counseling in primary care. Can Fam Physician 2013 59:27-31. https://www.ncbi.nlm.nih.gov/pubmed/23341653

316. Alexander SC, Cox ME, Boling Turer CL, et al.: Do the five A’s work when physicians counsel about weight loss? Fam Med 2011 43:179-184. https://www.ncbi.nlm.nih.gov/pubmed/21380950

317. Searight R: Realistic approaches to counseling in the office setting. Am Fam Physician 2009 79:277-284. https://www.ncbi.nlm.nih.gov/pubmed/19235494

318. Foote J, DeLuca A, Magura S, et al.: A group motivational treatment for chemical dependency. J Subst Abuse Treat 1999 17:181-192. https://www.ncbi.nlm.nih.gov/pubmed/10531624

Behavioral Therapy

319. Schneeberger M, Gomis R, Claret M: Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol 2014 220:T25-46. https://www.ncbi.nlm.nih.gov/pubmed/24222039

320. Cruwys T, Bevelander KE, Hermans RC: Social modeling of eating: a review of when and why social influence affects food intake and choice. Appetite 2015 86:3-18. https://www.ncbi.nlm.nih.gov/pubmed/25174571

321. Neymotin F, Nemzer LR: Locus of control and obesity. Front Endocrinol (Lausanne) 2014 5:159. https://www.ncbi.nlm.nih.gov/pubmed/25339940

322. Kemps E, Tiggemann M: Approach bias for food cues in obese individuals. Psychol Health 2015 30:370-

380. https://www.ncbi.nlm.nih.gov/pubmed/25307785

323. Johnson PM, Kenny PJ: Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 2010 13:635-641. https://www.ncbi.nlm.nih.gov/pubmed/20348917

324. Adam TC, Epel ES: Stress, eating and the reward system. Physiol Behav 2007 91:449-458. https://www.ncbi.nlm.nih.gov/pubmed/17543357

325. Monteleone P, Piscitelli F, Scognamiglio P, et al.: Hedonic eating is associated with increased peripheral levels of ghrelin and the endocannabinoid 2-arachidonoyl-glycerol in healthy humans: a pilot study. J Clin Endocrinol Metab 2012 97:E917-924. https://www.ncbi.nlm.nih.gov/pubmed/22442280

326. Amianto F, Ottone L, Abbate Daga G, et al.: Binge-eating disorder diagnosis and treatment: a recap in front of DSM-5. BMC Psychiatry 2015 15:70. https://www.ncbi.nlm.nih.gov/pubmed/25885566

327. Rikani AA, Choudhry Z, Choudhry AM, et al.: A critique of the literature on etiology of eating disorders. Ann Neurosci 2013 20:157-161. https://www.ncbi.nlm.nih.gov/pubmed/25206042

328. Brauhardt A, de Zwaan M, Hilbert A: The therapeutic process in psychological treatments for eating disorders: a systematic review. Int J Eat Disord 2014 47:565-584. https://www.ncbi.nlm.nih.gov/pubmed/24796817

329. Reas DL, Grilo CM: Current and emerging drug treatments for binge eating disorder. Expert Opin Emerg Drugs 2014 19:99-142. https://www.ncbi.nlm.nih.gov/pubmed/24460483

330. Aigner M, Treasure J, Kaye W, et al.: World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the pharmacological treatment of eating disorders. World J Biol Psychiatry 2011 12:400-443. https://www.ncbi.nlm.nih.gov/pubmed/21961502

331. Flament MF, Bissada H, Spettigue W: Evidence-based pharmacotherapy of eating disorders. Int J Neuropsychopharmacol 2012 15:189-207. https://www.ncbi.nlm.nih.gov/pubmed/21414249

332. Lisdexamfetamine dimesylate (VYVANSE) Prescribing Information http://pi.shirecontent.com/PI/PDFs/Vyvanse_USA_ENG.pdf (Accessed August 20, 2016).

333. Allison KC, Lundgren JD, O’Reardon JP, et al.: Proposed diagnostic criteria for night eating syndrome. Int J Eat Disord 2010 43:241-247. https://www.ncbi.nlm.nih.gov/pubmed/19378289

334. Gallant AR, Lundgren J, Drapeau V: The night-eating syndrome and obesity. Obes Rev 2012 13:528-536. https://www.ncbi.nlm.nih.gov/pubmed/22222118

335. Milano W, De Rosa M, Milano L, et al.: Night eating syndrome: an overview. J Pharm Pharmacol 2012 64:2-10. https://www.ncbi.nlm.nih.gov/pubmed/22150667

336. Stunkard AJ, Allison KC, Geliebter A, et al.: Development of criteria for a diagnosis: lessons from the night eating syndrome. Compr Psychiatry 2009 50:391-399. https://www.ncbi.nlm.nih.gov/pubmed/19683608

337. Gupta H: Barriers to and Facilitators of Long Term Weight Loss Maintenance in Adult UK People: A Thematic Analysis. Int J Prev Med 2014 5:1512-1520. https://www.ncbi.nlm.nih.gov/pubmed/25709786

338. Peterson JA: Get moving! Physical activity counseling in primary care. J Am Acad Nurse Pract 2007 19:349-357. https://www.ncbi.nlm.nih.gov/pubmed/17680900

339. Cornier MA: Is your brain to blame for weight regain? Physiol Behav 2011 104:608-612. https://www.ncbi.nlm.nih.gov/pubmed/21496461

340. Sainsbury A, Zhang L: Role of the hypothalamus in the neuroendocrine regulation of body weight and composition during energy deficit. Obes Rev 2012 13:234-257. https://www.ncbi.nlm.nih.gov/pubmed/22070225

341. Rosenbaum M, Leibel RL: Adaptive thermogenesis in humans. Int J Obes (Lond) 2010 34 Suppl 1:S47-55. https://www.ncbi.nlm.nih.gov/pubmed/20935667

342. Maclean PS, Bergouignan A, Cornier MA, et al.: Biology’s response to dieting: the impetus for weight regain. Am J Physiol Regul Integr Comp Physiol 2011 301:R581-600. https://www.ncbi.nlm.nih.gov/pubmed/21677272

343. Howlett N, Trivedi D, Troop NA, et al.: Are physical activity interventions for healthy inactive adults effective in promoting behavior change and maintenance, and which behavior change techniques are effective? A systematic review and meta-analysis. Transl Behav Med 2019 9:147-157. https://www.ncbi.nlm.nih.gov/pubmed/29506209

344. Richardson LA: Bariatric society is here to help. J Fam Pract 2010 59:488. https://www.ncbi.nlm.nih.gov/pubmed/20824223

345. Jacob JJ, Isaac R: Behavioral therapy for management of obesity. Indian J Endocrinol Metab 2012 16:28-32. https://www.ncbi.nlm.nih.gov/pubmed/22276250

346. Van Dorsten B, Lindley EM: Cognitive and behavioral approaches in the treatment of obesity. Med Clin North Am 2011 95:971-988. https://www.ncbi.nlm.nih.gov/pubmed/21855703

347. Karasu SR: Psychotherapy-lite: obesity and the role of the mental health practitioner. Am J Psychother 2013 67:3-22. https://www.ncbi.nlm.nih.gov/pubmed/23682511

348. Rutledge T, Groesz LM, Linke SE, et al.: Behavioural weight management for the primary careprovider. Obes Rev 2011 12:e290-297. https://www.ncbi.nlm.nih.gov/pubmed/21348915

349. Harvey J, Krukowski R, Priest J, et al.: Log Often, Lose More: Electronic Dietary Self-Monitoring for Weight Loss. Obesity 2019 27:380-384. https://doi.org/10.1002/oby.22382

350. Jeffery RW, Bjornson-Benson WM, Rosenthal BS, et al.: Behavioral treatment of obesity with monetary contracting: two-year follow-up. Addict Behav 1984 9:311-313. https://www.ncbi.nlm.nih.gov/pubmed/6496209

351. Brambila-Macias J, Shankar B, Capacci S, et al.: Policy interventions to promote healthy eating: a review of what works, what does not, and what is promising. Food Nutr Bull 2011 32:365-375.  https://www.ncbi.nlm.nih.gov/pubmed/22590970

Technologies for Weight Management

352. Dobkin BH: Wearable motion sensors to continuously measure real-world physical activities. Curr Opin Neurol 2013 26:602-608. https://www.ncbi.nlm.nih.gov/pubmed/24136126

353. Chou WY, Prestin A, Kunath S: Obesity in social media: a mixed methods analysis. Transl Behav Med 2014 4:314-323. https://www.ncbi.nlm.nih.gov/pubmed/25264470

354. Jakicic JM, Davis KK, Rogers RJ, et al.: Effect of Wearable Technology Combined With a Lifestyle Intervention on Long-term Weight Loss: The IDEA Randomized Clinical Trial. JAMA 2016 316:1161-1171. https://www.ncbi.nlm.nih.gov/pubmed/27654602

355.Cheatham SW, Stull KR, Fantigrassi M, et al.: The efficacy of wearable activity tracking technology as part of a weight loss program: a systematic review. J Sports Med Phys Fitness 2018 58:534-548.

Additional references used in this section: [182][291][292]

Medication

356. Bray GA: Why do we need drugs to treat the patient with obesity? Obesity (Silver Spring) 2013 21:893-899. https://www.ncbi.nlm.nih.gov/pubmed/23520198

357. Bays HE: Lorcaserin: drug profile and illustrative model of the regulatory challenges of weight-loss drug development. Expert Rev Cardiovasc Ther 2011 9:265-277. https://www.ncbi.nlm.nih.gov/pubmed/21438803

358. Food and Drug Administration. Pregnancy and Lactation Labeling (Drugs) Final Rule. December 3, 2014. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/Labeling/ucm093307.htm (Accessed August 21, 2016).

359. Hendricks EJ, Greenway FL, Westman EC, et al.: Blood pressure and heart rate effects, weight loss and maintenance during longterm phentermine pharmacotherapy for obesity. Obesity (Silver Spring) 2011 19:2351-2360. https://www.ncbi.nlm.nih.gov/pubmed/21527891

360. Fujioka K: Current and emerging medications for overweight or obesity in people with comorbidities. Diabetes Obes Metab 2015 17:1021-1032. https://www.ncbi.nlm.nih.gov/pubmed/26040215

361. Lorcaserin (BELVIQ) Prescribing Information. http://www.belviq.com/pdf/Belviq_Prescribing_information.pdf (Accessed August 21, 2016).

362. Bays HE: Lorcaserin and adiposopathy: 5-HT2c agonism as a treatment for ‘sick fat’ and metabolic disease. Expert Rev Cardiovasc Ther 2009 7:1429-1445. https://www.ncbi.nlm.nih.gov/pubmed/19900026

363. Kose M, Emet S, Akpinar TS, et al.: An Unexpected Result of Obesity Treatment: Orlistat-Related Acute Pancreatitis. Case Rep Gastroenterol 2015 9:152-155. https://www.ncbi.nlm.nih.gov/pubmed/26078734

364. Lim S, Rogers LK, Tessler O, et al.: Phentermine: A Systematic Review for Plastic and Reconstructive Surgeons. Ann Plast Surg 2018 81:503-507. https://www.ncbi.nlm.nih.gov/pubmed/30204622

365. Liraglutide Prescribing Information for Treatment of Obesity (SAXENDA) https://www.novo-pi.com/saxenda.pdf (Accessed March 3, 2019).

366. Liraglutide Prescribing Information for Treatment of Type 2 Diabetes Mellitus (VICTOZA) https://www.novo-pi.com/victoza.pdf (Accessed March 3, 2019).

367. Naltrexone HCL/Bupropion HCL Extended Release Prescribing Information (CONTRAVE). http://general.takedapharm.com/content/file.aspx?filetypecode=CONTRAVEPI&cacheRandomizer=c5f9d506-7c0a-4c03-b357-2a926ba14990 (Accessed August 21, 2016).

368. Phentermine HCL/Topiramate Extended Release Prescribing Information (QSYMIA) http://www.vivus.com/docs/QsymiaPI.pdf (Accessed August 21, 2016).

369. Garvey WT, Mechanick JI, Brett EM, et al.: American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive Clinical Practice Guidelines for Medical Care of Patients with Obesity. Endocr Pract 2016 22 Suppl 3:1-203. https://www.ncbi.nlm.nih.gov/pubmed/27219496

370. Bays HE, Jones PH, Orringer CE, et al.: National Lipid Association Annual Summary of Clinical Lipidology 2016. J Clin Lipidol 2016 10:S1-43. https://www.ncbi.nlm.nih.gov/pubmed/26891998

371. Piscitelli SC, Gallicano KD: Interactions among drugs for HIV and opportunistic infections. N Engl J Med 2001 344:984-996. https://www.ncbi.nlm.nih.gov/pubmed/11274626

372. Zhang X, Lerman LO: Obesity and renovascular disease. Am J Physiol Renal Physiol 2015 309:F273-279. https://www.ncbi.nlm.nih.gov/pubmed/26041447

373. Gupta D, Bhatia D, Dave V, et al.: Salts of Therapeutic Agents: Chemical, Physicochemical, and Biological Considerations. Molecules 2018 23:https://www.ncbi.nlm.nih.gov/pubmed/30011904

374. Bays HE, Gadde KM: Phentermine/topiramate for weight reduction and treatment of adverse metabolic consequences in obesity. Drugs Today (Barc) 2011 47:903-914. https://www.ncbi.nlm.nih.gov/pubmed/22348915

375. Bays H: Phentermine, topiramate and their combination for the treatment of adiposopathy (‘sick fat’) and metabolic disease. Expert Rev Cardiovasc Ther 2010 8:1777-1801. https://www.ncbi.nlm.nih.gov/pubmed/20707765

376. LOMAIRA™ (phentermine hydrochloride USP) tablets, CIV) https://www.lomaira.com/Prescribing_Information.pdf (Accessed December 16, 2018).

377. Bays HE, Cobble M: Individualizing Treatment with Statin Therapy. J Fam Pract 2018 67:S43-S48. https://www.ncbi.nlm.nih.gov/pubmed/30137053

378. Hanley MJ, Abernethy DR, Greenblatt DJ: Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet 2010 49:71-87. https://www.ncbi.nlm.nih.gov/pubmed/20067334

379. Cheymol G: Effects of obesity on pharmacokinetics implications for drug therapy. Clin Pharmacokinet 2000 39:215-231. https://www.ncbi.nlm.nih.gov/pubmed/11020136

380. Jesudason DR, Clifton P: Interpreting different measures of glomerular filtration rate in obesity and weight loss: pitfalls for the clinician. Int J Obes (Lond) 2012 36:1421-1427. https://www.ncbi.nlm.nih.gov/pubmed/22184061

381. Bays H, Rodbard HW, Schorr AB, et al.: Adiposopathy: treating pathogenic adipose tissue to reduce cardiovascular disease risk. Curr Treat Options Cardiovasc Med 2007 9:259-271. https://www.ncbi.nlm.nih.gov/pubmed/17761111

382. Cercato C, Roizenblatt VA, Leanca CC, et al.: A randomized double-blind placebo-controlled study of the long-term efficacy and safety of diethylpropion in the treatment of obese subjects. Int J Obes (Lond) 2009 33:857-865. https://www.ncbi.nlm.nih.gov/pubmed/19564877

383. Le Riche WH, Van Belle G: Study of phendimetrazine bitartrate as an appetite suppressant in relation to dosage, weight loss and side effects. Can Med Assoc J 1962 87:29-31. https://www.ncbi.nlm.nih.gov/pubmed/14463177

384. Hendricks EJ: Off-label drugs for weight management. Diabetes Metab Syndr Obes 2017 10:223-234. https://www.ncbi.nlm.nih.gov/pubmed/28652791

385. XENICAL® (orlistat) Capsules https://www.xenical.com/pdf/PI_Xenical-brand_FINAL.PDF (Accessed December 16, 2018).

386.Kumar RB, Aronne LJ: Efficacy comparison of medications approved for chronic weight management. Obesity (Silver Spring) 2015 23 Suppl 1:S4-7. https://www.ncbi.nlm.nih.gov/pubmed/25900871. Additional references used in this section: [43][71][72][183]

Functional Foods, Supplements, and Over-the-counter Therapies

387. Zarin DA, Tse T, Sheehan J: The proposed rule for U.S. clinical trial registration and results submission. N Engl J Med 2015 372:174-180. https://www.ncbi.nlm.nih.gov/pubmed/25539444

388. Dubben HH, Beck-Bornholdt HP: Systematic review of publication bias in studies on publication bias. BMJ 2005 331:433-434. https://www.ncbi.nlm.nih.gov/pubmed/15937056

389. Heyman ML, Williams RL: Ensuring global access to quality medicines: role of the US Pharmacopeia. J Pharm Sci 2011 100:1280-1287.

390. Navarro VJ, Khan I, Bjornsson E, et al.: Liver injury from herbal and dietary supplements. Hepatology 2017 65:363-373. https://www.ncbi.nlm.nih.gov/pubmed/27677775

Functional Foods, Supplements, and Over-the-counter Therapies (continued)

391. Pol K, Christensen R, Bartels EM, et al.: Whole grain and body weight changes in apparently healthy adults: a systematic review and meta-analysis of randomized controlled studies. Am J Clin Nutr 2013 98:872-

884. https://www.ncbi.nlm.nih.gov/pubmed/23945718

392. Seganfredo FB, Blume CA, Moehlecke M, et al.: Weight-loss interventions and gut microbiota changes in overweight and obese patients: a systematic review. Obes Rev 2017 18:832-851. https://www.ncbi.nlm.nih.gov/pubmed/28524627

393. He M, Shi B: Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci 2017 7:54. https://www.ncbi.nlm.nih.gov/pubmed/29090088

394. Harpaz E, Tamir S, Weinstein A, et al.: The effect of caffeine on energy balance. J Basic Clin Physiol Pharmacol 2017 28:1-10. https://www.ncbi.nlm.nih.gov/pubmed/27824614

395. Examine.com. https://examine.com Accessed December 4, 2017.

396. Janssens PL, Hursel R, Westerterp-Plantenga MS: Nutraceuticals for body-weight management: The role of green tea catechins. Physiol Behav 2016 162:83-87. https://www.ncbi.nlm.nih.gov/pubmed/26836279

397. Onakpoya I, Terry R, Ernst E: The use of green coffee extract as a weight loss supplement: a systematic review and meta-analysis of randomised clinical trials. Gastroenterol Res Pract 2011 2011:https://www.ncbi.nlm.nih.gov/pubmed/20871849

398. Onakpoya IJ, Posadzki PP, Watson LK, et al.: The efficacy of long-term conjugated linoleic acid (CLA) supplementation on body composition in overweight and obese individuals: a systematic review and meta-analysis of randomized clinical trials. Eur J Nutr 2012 51:127-134. https://www.ncbi.nlm.nih.gov/pubmed/21990002

399. Cederroth CR, Nef S: Soy, phytoestrogens and metabolism: A review. Mol Cell Endocrinol 2009 304:30-42. https://www.ncbi.nlm.nih.gov/pubmed/19433245

400. Cope MB, Erdman JW, Jr., Allison DB: The potential role of soyfoods in weight and adiposity reduction: an evidence-based review. Obes Rev 2008 9:219-235. https://www.ncbi.nlm.nih.gov/pubmed/18419671

401. Benjamin S, Prakasan P, Sreedharan S, et al.: Pros and cons of CLA consumption: an insight from clinical evidences. Nutr Metab (Lond) 2015 12:4. https://www.ncbi.nlm.nih.gov/pubmed/25972911

402. Patisaul HB, Jefferson W: The pros and cons of phytoestrogens. Front Neuroendocrinol 2010 31:400-419. https://www.ncbi.nlm.nih.gov/pubmed/20347861

403. Schwartz SM, Bansal VP, Hale C, et al.: Compliance, behavior change, and weight loss with orlistat in an over-the-counter setting. Obesity (Silver Spring) 2008 16:623-629. https://www.ncbi.nlm.nih.gov/pubmed/18239553

404. Onakpoya I, Davies L, Posadzki P, et al.: The efficacy of Irvingia gabonensis supplementation in the management of overweight and obesity: a systematic review of randomized controlled trials. J Diet Suppl 2013 10:29-38. https://www.ncbi.nlm.nih.gov/pubmed/23419021

405. Jull AB, Ni Mhurchu C, Bennett DA, et al.: Chitosan for overweight or obesity. Cochrane Database Syst Rev 2008 CD003892. https://www.ncbi.nlm.nih.gov/pubmed/18646097

406. Onakpoya I, Posadzki P, Ernst E: The efficacy of glucomannan supplementation in overweight and obesity: a systematic review and meta-analysis of randomized clinical trials. J Am Coll Nutr 2014 33:70-78. https://www.ncbi.nlm.nih.gov/pubmed/24533610

407. Marquez F, Babio N, Bullo M, et al.: Evaluation of the safety and efficacy of hydroxycitric acid or Garcinia cambogia extracts in humans. Crit Rev Food Sci Nutr 2012 52:585-594. https://www.ncbi.nlm.nih.gov/pubmed/22530711

408. Lunsford KE, Bodzin AS, Reino DC, et al.: Dangerous dietary supplements: Garcinia cambogia-associated hepatic failure requiring transplantation. World J Gastroenterol 2016 22:10071-10076. https://www.ncbi.nlm.nih.gov/pubmed/28018115

409. Vermorel M, Davicco MJ, Evrard J: Valorization of rapeseed meal. 3. Effects of glucosinolate content on food intake, weight gain, liver weight and plasma thyroid hormone levels in growing rats. Reprod Nutr Dev 1987 27:57-66. https://www.ncbi.nlm.nih.gov/pubmed/3575869

410. Loftus HL, Astell KJ, Mathai ML, et al.: Coleus forskohlii Extract Supplementation in Conjunction with a Hypocaloric Diet Reduces the Risk Factors of Metabolic Syndrome in Overweight and Obese Subjects: A Randomized Controlled Trial. Nutrients 2015 7:9508-9522. https://www.ncbi.nlm.nih.gov/pubmed/26593941

411. Smith C, Krygsman A: Hoodia gordonii: to eat, or not to eat. J Ethnopharmacol 2014 155:987-991. https://www.ncbi.nlm.nih.gov/pubmed/24955559

412. Roza O, Lovasz N, Zupko I, et al.: Sympathomimetic activity of a Hoodia gordonii product: a possible mechanism of cardiovascular side effects. Biomed Res Int 2013 2013:171059. https://www.ncbi.nlm.nih.gov/pubmed/24307991

413. Ju J, Li J, Lin Q, et al.: Efficacy and safety of berberine for dyslipidaemias: A systematic review and meta-analysis of randomized clinical trials. Phytomedicine 2018 50:25-34. https://www.ncbi.nlm.nih.gov/pubmed/30466986

414. Yen M, Ewald MB: Toxicity of weight loss agents. J Med Toxicol 2012 8:145-152. https://www.ncbi.nlm.nih.gov/pubmed/22351299

415. Tucker J, Fischer T, Upjohn L, et al.: Unapproved Pharmaceutical Ingredients Included in Dietary Supplements Associated With US Food and Drug Administration Warnings. JAMA Netw Open 2018 1:e183337. https://www.ncbi.nlm.nih.gov/pubmed/30646238

416. U.S. Food and Drug Administration. HCG Diet Products are Illegal. www.fda.gov/forconsumers/consumerupdates/ucm281333.htm Accessed December 4, 2017.

417. Lijesen GK, Theeuwen I, Assendelft WJ, et al.: The effect of human chorionic gonadotropin (HCG) in the treatment of obesity by means of the Simeons therapy: a criteria-based meta-analysis. Br J Clin Pharmacol 1995 40:237-243. https://www.ncbi.nlm.nih.gov/pubmed/8527285

418. Obesity Medicine Association. Obesity Medicine Association Applauds American Medical Association’s Decision to Adopt New AntiHCG Policy. https://obesitymedicine.org/use-of-hcg-for-weight-loss-inappropriate Accessed December 4, 2017.

Obesity and Metabolic Disease

419. Ayas NT, Taylor CM, Laher I: Cardiovascular consequences of obstructive sleep apnea. Curr Opin Cardiol 2016 31:599-605.

420. Reutrakul S, Van Cauter E: Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. Metabolism 2018 84:56-66. https://www.ncbi.nlm.nih.gov/pubmed/29510179

421. de Simone G, Mancusi C, Izzo R, et al.: Obesity and hypertensive heart disease: focus on body composition and sex differences. Diabetol Metab Syndr 2016 8:79. https://www.ncbi.nlm.nih.gov/pubmed/27956942

422. Gu C, Younas H, Jun JC: Sleep apnea: An overlooked cause of lipotoxicity? Med Hypotheses 2017 108:161-165.

423. Pearson T, Wattis JA, King JR, et al.: The Effects of Insulin Resistance on Individual Tissues: An Application of a Mathematical Model of Metabolism in Humans. Bull Math Biol 2016 78:1189-1217. https://www.ncbi.nlm.nih.gov/pubmed/27306890

424. Sarr O, Strohm RJ, MacDonald TL, et al.: Subcutaneous and Visceral Adipose Tissue Secretions from Extremely Obese Men and Women both Acutely Suppress Muscle Insulin Signaling. Int J Mol Sci 2017 18:https://www.ncbi.nlm.nih.gov/pubmed/28468326

425. Kitessa SM, Abeywardena MY: Lipid-Induced Insulin Resistance in Skeletal Muscle: The Chase for the Culprit Goes from Total Intramuscular Fat to Lipid Intermediates, and Finally to Species of Lipid Intermediates. Nutrients 2016 8: https://www.ncbi.nlm.nih.gov/pubmed/27483311

Additional references used in this section: [4]

Obesity and Cardiovascular Disease

426. Riaz H, Khan MS, Siddiqi TJ, et al.: Association Between Obesity and Cardiovascular Outcomes: A Systematic Review and Metaanalysis of Mendelian Randomization Studies. JAMA Netw Open 2018 1:e183788.

427. Vilahur G, Ben-Aicha S, Badimon L: New insights into the role of adipose tissue in thrombosis. Cardiovasc Res 2017 113:1046-1054. https://www.ncbi.nlm.nih.gov/pubmed/28472252

428. Neeland IJ, Poirier P, Despres JP: Cardiovascular and Metabolic Heterogeneity of Obesity: Clinical Challenges and Implications for Management. Circulation 2018 137:1391-1406. https://www.ncbi.nlm.nih.gov/pubmed/29581366

429. Ei Ei Khaing N, Shyong TE, Lee J, et al.: Epicardial and visceral adipose tissue in relation to subclinical atherosclerosis in a Chinese population. PLoS One 2018 13:e0196328.

430.Abazid RM, Kattea MO, Sayed S, et al.: Visceral adipose tissue influences on coronary artery calcification at young and middle-age groups using computed tomography angiography. Avicenna J Med 2015 5:83-88.

431. Csige I, Ujvarosy D, Szabo Z, et al.: The Impact of Obesity on the Cardiovascular System. J Diabetes Res 2018 2018:3407306. https://www.ncbi.nlm.nih.gov/pubmed/30525052

432. Kaushik M, Reddy YM: Distinction of “fat around the heart”. J Am Coll Cardiol 2011 58:1640; author reply 1640-1641. https://www.ncbi.nlm.nih.gov/pubmed/21958896

433. Prenner SB, Mather PJ: Obesity and heart failure with preserved ejection fraction: A growing problem. Trends Cardiovasc Med 2018 28:322-327. https://www.ncbi.nlm.nih.gov/pubmed/29305040

434. Tsujimoto T, Kajio H: Abdominal Obesity Is Associated With an Increased Risk of All-Cause Mortality in Patients With HFpEF. J Am Coll Cardiol 2017 70:2739-2749. https://www.ncbi.nlm.nih.gov/pubmed/29191321

435. Packer M: Obesity-Associated Heart Failure as a Theoretical Target for Treatment With Mineralocorticoid Receptor Antagonists. JAMA Cardiol 2018 3:883-887. https://www.ncbi.nlm.nih.gov/pubmed/30046826

436. Parikh KS, Sharma K, Fiuzat M, et al.: Heart Failure With Preserved Ejection Fraction Expert Panel Report: Current Controversies and Implications for Clinical Trials. JACC Heart Fail 2018 6:619-632. https://www.ncbi.nlm.nih.gov/pubmed/30071950

437. Savji N, Meijers WC, Bartz TM, et al.: The Association of Obesity and Cardiometabolic Traits With Incident HFpEF and HFrEF. JACC Heart Fail 2018 6:701-709. https://www.ncbi.nlm.nih.gov/pubmed/30007554

438. Obokata M, Reddy YNV, Pislaru SV, et al.: Evidence Supporting the Existence of a Distinct Obese Phenotype of Heart Failure With Preserved Ejection Fraction. Circulation 2017 136:6-19. https://www.ncbi.nlm.nih.gov/pubmed/28381470

439. Oikonomou EK, Marwan M, Desai MY, et al.: Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet 2018 392:929-939. https://www.ncbi.nlm.nih.gov/pubmed/30170852

440. Goeller M, Achenbach S, Marwan M, et al.: Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects. J Cardiovasc Comput Tomogr 2018 12:67-73. https://www.ncbi.nlm.nih.gov/pubmed/29233634

441. Wu Y, Zhang A, Hamilton DJ, et al.: Epicardial Fat in the Maintenance of Cardiovascular Health. Methodist Debakey Cardiovasc J 2017 13:20-24. https://www.ncbi.nlm.nih.gov/pubmed/28413578

442. Pandey A, LaMonte M, Klein L, et al.: Relationship Between Physical Activity, Body Mass Index, and Risk of Heart Failure. J Am Coll Cardiol 2017 69:1129-1142.

443. Packer M: Epicardial Adipose Tissue May Mediate Deleterious Effects of Obesity and Inflammation on the Myocardium. J Am Coll Cardiol 2018 71:2360-2372. https://www.ncbi.nlm.nih.gov/pubmed/29773163

444. Fitzgibbons TP, Czech MP: Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc 2014 3:e000582. https://www.ncbi.nlm.nih.gov/pubmed/24595191

445. Javaheri S, Javaheri S, Javaheri A: Sleep apnea, heart failure, and pulmonary hypertension. Curr Heart Fail Rep 2013 10:315-320. https://www.ncbi.nlm.nih.gov/pubmed/24097114

446. Blokhin IO, Lentz SR: Mechanisms of thrombosis in obesity. Curr Opin Hematol 2013 20:437-444.https://www.ncbi.nlm.nih.gov/pubmed/23817170

447. Lefranc C, Friederich-Persson M, Palacios-Ramirez R, et al.: Mitochondrial oxidative stress in obesity: role of the mineralocorticoid receptor. J Endocrinol 2018 238:R143-R159. https://www.ncbi.nlm.nih.gov/pubmed/29875164

448. Uchida Y, Uchida Y, Shimoyama E, et al.: Human pericoronary adipose tissue as storage and possible supply site for oxidized low-density lipoprotein and high-density lipoprotein in coronary artery. J Cardiol 2017 69:236-244. https://www.ncbi.nlm.nih.gov/pubmed/27209423

449. Salazar J, Luzardo E, Mejias JC, et al.: Epicardial Fat: Physiological, Pathological, and Therapeutic Implications. Cardiol Res Pract 2016 2016:1291537. https://www.ncbi.nlm.nih.gov/pubmed/27213076

450. Cavender MA, Norhammar A, Birkeland KI, et al.: SGLT-2 Inhibitors and Cardiovascular Risk: An Analysis of CVD-REAL. J Am Coll Cardiol 2018 71:2497-2506. https://www.ncbi.nlm.nih.gov/pubmed/29852973

451. Kosiborod M, Lam CSP, Kohsaka S, et al.: Cardiovascular Events Associated With SGLT-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL 2 Study. J Am Coll Cardiol 2018 71:2628-2639. https://www.ncbi.nlm.nih.gov/pubmed/29540325

452. Home P: Cardiovascular outcome trials of glucose-lowering medications: an update. Diabetologia 2019 https://www.ncbi.nlm.nih.gov/pubmed/30607467

453. Coulter AA, Rebello CJ, Greenway FL: Centrally Acting Agents for Obesity: Past, Present, and Future. Drugs 2018 78:1113-1132. https://www.ncbi.nlm.nih.gov/pubmed/30014268

454. Bohula EA, Wiviott SD, McGuire DK, et al.: Cardiovascular Safety of Lorcaserin in Overweight or Obese Patients. N Engl J Med 2018 379:1107-1117. https://www.ncbi.nlm.nih.gov/pubmed/30145941

455. Bohula EA, Scirica BM, Inzucchi SE, et al.: Effect of lorcaserin on prevention and remission of type 2 diabetes in overweight and obese patients (CAMELLIA-TIMI 61): a randomised, placebo-controlled trial. Lancet 2018 392:2269-2279. https://www.ncbi.nlm.nih.gov/pubmed/30293771

456. Bays H, Perdomo C, Nikonova E, et al.: Lorcaserin and metabolic disease: weight-loss dependent and independent effects. Obes Sci Pract 2018 4:499-505. https://www.ncbi.nlm.nih.gov/pubmed/30574343

457. Scirica BM, Bohula EA, Dwyer JP, et al.: Lorcaserin and Renal Outcomes in Obese and Overweight Patients in the CAMELLIA-TIMI 61 Trial. Circulation 2018 https://www.ncbi.nlm.nih.gov/pubmed/30586726

458. Gadde KM, Martin CK, Berthoud HR, et al.: Obesity: Pathophysiology and Management. J Am Coll Cardiol 2018 71:69-84. https://www.ncbi.nlm.nih.gov/pubmed/29301630

459. Ritchey ME, Harding A, Hunter S, et al.: Cardiovascular Safety During and After Use of Phentermine and Topiramate. J Clin Endocrinol Metab 2019 104:513-522. https://www.ncbi.nlm.nih.gov/pubmed/30247575

460. Das SR, Everett BM, Birtcher KK, et al.: 2018 ACC Expert Consensus Decision Pathway on Novel Therapies for Cardiovascular Risk Reduction in Patients With Type 2 Diabetes and Atherosclerotic Cardiovascular Disease: A Report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways. J Am Coll Cardiol 2018 72:3200-3223. https://www.ncbi.nlm.nih.gov/pubmed/30497881

461. Kramer CK, Ye C, Campbell S, et al.: Comparison of New Glucose-Lowering Drugs on Risk of Heart Failure in Type 2 Diabetes: A Network Meta-Analysis. JACC Heart Fail 2018 6:823-830. https://www.ncbi.nlm.nih.gov/pubmed/30196071

462. Sanches Machado d’Almeida K, Ronchi Spillere S, Zuchinali P, et al.: Mediterranean Diet and Other Dietary Patterns in Primary Prevention of Heart Failure and Changes in Cardiac Function Markers: A Systematic Review. Nutrients 2018 10: https://www.ncbi.nlm.nih.gov/pubmed/29320401

463. Jorsal A, Kistorp C, Holmager P, et al.: Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial. Eur J Heart Fail 2017 19:69-77. https://www.ncbi.nlm.nih.gov/pubmed/27790809

464. Retwinski A, Kosmalski M, Crespo-Leiro M, et al.: The influence of metformin and the presence of type 2 diabetes mellitus on mortality and hospitalisation in patients with heart failure. Kardiol Pol 2018 76:1336-1343. https://www.ncbi.nlm.nih.gov/pubmed/29862487

465. Weir DL, Abrahamowicz M, Beauchamp ME, et al.: Acute vs cumulative benefits of metformin use in patients with type 2 diabetes and heart failure. Diabetes Obes Metab 2018 20:2653-2660. https://www.ncbi.nlm.nih.gov/pubmed/29934961

466. Margulies KB, Hernandez AF, Redfield MM, et al.: Effects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA 2016 316:500-508. https://www.ncbi.nlm.nih.gov/pubmed/27483064

467. Margulies KB, McNulty SE, Cappola TP: Lack of Benefit for Liraglutide in Heart Failure-Reply. JAMA 2016 316:2429-2430. https://www.ncbi.nlm.nih.gov/pubmed/27959992

468. Vorsanger MH, Subramanyam P, Weintraub HS, et al.: Cardiovascular Effects of the New Weight Loss Agents. J Am Coll Cardiol 2016 68:849-859.

469. Bethel MA, Patel RA, Merrill P, et al.: Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol 2018 6:105-113.

470. Sharma A, Cooper LB, Fiuzat M, et al.: Antihyperglycemic Therapies to Treat Patients With Heart Failure and Diabetes Mellitus. JACC Heart Fail 2018 6:813-822. Additional references used in this section: [4][21][30][75][87][365][366]

Obesity and Elevated Blood Sugar

471. Bays H, Blonde L, Rosenson R: Adiposopathy: how do diet, exercise and weight loss drug therapies improve metabolic disease in overweight patients? Expert Rev Cardiovasc Ther 2006 4:871-895. https://www.ncbi.nlm.nih.gov/pubmed/17173503

472. Bays H, Ballantyne C: Adiposopathy: why do adiposity and obesity cause metabolic disease? Future Lipidol. 2006 1:389-420.

473. Bays H, Abate N, Chandalia M: Adiposopathy: sick fat causes high blood sugar, high blood pressure and dyslipidemia. Future Cardiol 2005 1:39-59. https://www.ncbi.nlm.nih.gov/pubmed/19804060

474. Bays H: Adiposopathy, metabolic syndrome, quantum physics, general relativity, chaos and the Theory of Everything. Expert Rev Cardiovasc Ther 2005 3:393-404. https://www.ncbi.nlm.nih.gov/pubmed/15889967

475. Yu JS, Cui W: Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 2016 143:3050-3060. https://www.ncbi.nlm.nih.gov/pubmed/27578176

476. Makki K, Froguel P, Wolowczuk I: Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm 2013 2013:139239. https://www.ncbi.nlm.nih.gov/pubmed/24455420

477. DeMarco VG, Aroor AR, Sowers JR: The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol 2014 10:364-376. https://www.ncbi.nlm.nih.gov/pubmed/24732974

478. Zoller V, Funcke JB, Keuper M, et al.: TRAIL (TNF-related apoptosis-inducing ligand) inhibits human adipocyte differentiation via caspase-mediated downregulation of adipogenic transcription factors. Cell Death Dis 2016 7:e2412.

479. Fronczyk A, Moleda P, Safranow K, et al.: Increased concentration of C-reactive protein in obese patients with type 2 diabetes is associated with obesity and presence of diabetes but not with macrovascular and microvascular complications or glycemic control. Inflammation 2014 37:349-357. https://www.ncbi.nlm.nih.gov/pubmed/24197824

480. D’Souza A M, Neumann UH, Glavas MM, et al.: The glucoregulatory actions of leptin. Mol Metab 2017 6:1052-1065. https://www.ncbi.nlm.nih.gov/pubmed/28951828

481. Geer EB, Islam J, Buettner C: Mechanisms of glucocorticoid-induced insulin resistance: focus on adipose tissue function and lipid metabolism. Endocrinol Metab Clin North Am 2014 43:75-102. https://www.ncbi.nlm.nih.gov/pubmed/24582093

482. Fisette A, Lapointe M, Cianflone K: Obesity-inducing diet promotes acylation stimulating protein resistance. Biochem Biophys Res Commun 2013 437:403-407. https://www.ncbi.nlm.nih.gov/pubmed/23831465

483. Thorp AA, Schlaich MP: Relevance of Sympathetic Nervous System Activation in Obesity and Metabolic Syndrome. J Diabetes Res 2015 2015:341583. https://www.ncbi.nlm.nih.gov/pubmed/26064978

484. Stimson RH, Walker BR: The role and regulation of 11beta-hydroxysteroid dehydrogenase type 1 in obesity and the metabolic syndrome. Horm Mol Biol Clin Investig 2013 15:37-48.

485. Bays H, Mandarino L, DeFronzo RA: Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 2004 89:463-478. https://www.ncbi.nlm.nih.gov/pubmed/14764748

486. Veret J, Bellini L, Giussani P, et al.: Roles of Sphingolipid Metabolism in Pancreatic beta Cell Dysfunction Induced by Lipotoxicity. J Clin Med 2014 3:646-662. https://www.ncbi.nlm.nih.gov/pubmed/26237395

487. Larsen PJ, Tennagels N: On ceramides, other sphingolipids and impaired glucose homeostasis. Mol Metab 2014 3:252-260. https://www.ncbi.nlm.nih.gov/pubmed/24749054

488. Taylor R, Al-Mrabeh A, Zhyzhneuskaya S, et al.: Remission of Human Type 2 Diabetes Requires Decrease in Liver and Pancreas Fat Content but Is Dependent upon Capacity for beta Cell Recovery. Cell Metab 2018 28:547-556 e543. https://www.ncbi.nlm.nih.gov/pubmed/30078554

489. Cefalu WT, Kaul S, Gerstein HC, et al.: Cardiovascular Outcomes Trials in Type 2 Diabetes: Where Do We Go From Here? Reflections From a Diabetes Care Editors’ Expert Forum. Diabetes Care 2018 41:14-31. https://www.ncbi.nlm.nih.gov/pubmed/29263194

490. Schnell O, Ryden L, Standl E, et al.: Updates on cardiovascular outcome trials in diabetes. Cardiovasc Diabetol 2017 16:128. https://www.ncbi.nlm.nih.gov/pubmed/29020969

491. Andrikou E, Tsioufis C, Andrikou I, et al.: GLP-1 receptor agonists and cardiovascular outcome trials: An update. Hellenic J Cardiol 2018 https://www.ncbi.nlm.nih.gov/pubmed/30528435

492. Hernandez AF, Green JB, Janmohamed S, et al.: Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 2018 392:1519-1529. https://www.ncbi.nlm.nih.gov/pubmed/30291013

493. Rosenstock J, Perkovic V, Johansen OE, et al.: Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults With Type 2 Diabetes and High Cardiovascular and Renal Risk: The CARMELINA Randomized Clinical Trial. JAMA 2018 https://www.ncbi.nlm.nih.gov/pubmed/30418475

494. Wiviott SD, Raz I, Bonaca MP, et al.: Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2018 https://www.ncbi.nlm.nih.gov/pubmed/30415602

495. Hsu PF, Sung SH, Cheng HM, et al.: Cardiovascular Benefits of Acarbose vs Sulfonylureas in Patients With Type 2 Diabetes Treated With Metformin. J Clin Endocrinol Metab 2018 103:3611-3619. https://www.ncbi.nlm.nih.gov/pubmed/30113697

496. Verma S, Poulter NR, Bhatt DL, et al.: Effects of Liraglutide on Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus With or Without History of Myocardial Infarction or Stroke. Circulation 2018 138:2884-2894. https://www.ncbi.nlm.nih.gov/pubmed/30566004

497. O’Brien MJ, Karam SL, Wallia A, et al.: Association of Second-line Antidiabetic Medications With Cardiovascular Events Among Insured Adults With Type 2 Diabetes. JAMA Netw Open 2018 1:e186125.

Additional references used in this section: [20][22][365][366][376][426]

Obesity and High Blood Pressure

498. Landsberg L, Aronne LJ, Beilin LJ, et al.: Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment—a position paper of the The Obesity Society and The American Society of Hypertension. Obesity (Silver Spring) 2013 21:8-24. https://www.ncbi.nlm.nih.gov/pubmed/23401272

499. Kim DH, Kim C, Ding EL, et al.: Adiponectin levels and the risk of hypertension: a systematic review and meta-analysis. Hypertension 2013 62:27-32. https://www.ncbi.nlm.nih.gov/pubmed/23716587

500. Nguyen NQ, Debreceni TL, Burgstad CM, et al.: Effects of Posture and Meal Volume on Gastric Emptying, Intestinal Transit, Oral Glucose Tolerance, Blood Pressure and Gastrointestinal Symptoms After Roux-en-Y Gastric Bypass. Obes Surg 2015 25:1392-1400. https://www.ncbi.nlm.nih.gov/pubmed/25502436

501. Kawarazaki W, Fujita T: The Role of Aldosterone in Obesity-Related Hypertension. Am J Hypertens 2016 29:415-423. https://www.ncbi.nlm.nih.gov/pubmed/26927805

502. Lim K, Burke SL, Head GA: Obesity-related hypertension and the role of insulin and leptin in high-fat-fed rabbits. Hypertension 2013 61:628-634. https://www.ncbi.nlm.nih.gov/pubmed/23339171

503. Trahair LG, Horowitz M, Jones KL: Postprandial hypotension: a systematic review. J Am Med Dir Assoc 2014 15:394-409. https://www.ncbi.nlm.nih.gov/pubmed/24630686

504. Rust P, Ekmekcioglu C: Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension. Adv Exp Med Biol 2017 956:61-84. https://www.ncbi.nlm.nih.gov/pubmed/27757935

505. DiNicolantonio JJ, Lucan SC: The wrong white crystals: not salt but sugar as aetiological in hypertension and cardiometabolic disease. Open Heart 2014 1:e000167.

506. Barton M, Baretella O, Meyer MR: Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction. Br J Pharmacol 2012 165:591-602. https://www.ncbi.nlm.nih.gov/pubmed/21557734

507. Buckley LF, Canada JM, Del Buono MG, et al.: Low NT-proBNP levels in overweight and obese patients do not rule out a diagnosis of heart failure with preserved ejection fraction. ESC Heart Fail 2018 5:372-378. https://www.ncbi.nlm.nih.gov/pubmed/29345112

508. Engin A: Endothelial Dysfunction in Obesity. Adv Exp Med Biol 2017 960:345-379. https://www.ncbi.nlm.nih.gov/pubmed/28585207

509. Khalid U, Wruck LM, Quibrera PM, et al.: BNP and obesity in acute decompensated heart failure with preserved vs. reduced ejection fraction: The Atherosclerosis Risk in Communities Surveillance Study. Int J Cardiol 2017 233:61-66. https://www.ncbi.nlm.nih.gov/pubmed/28185703

510. Kistorp C, Bliddal H, Goetze JP, et al.: Cardiac natriuretic peptides in plasma increase after dietary induced weight loss in obesity. BMC Obes 2014 1:24. https://www.ncbi.nlm.nih.gov/pubmed/26217511 Additional references used in this section: [4][21][472][483]

Obesity and Dyslipidemia

511. Bays H, Kothari SN, Azagury DE, et al.: Lipids and bariatric procedures Part 2 of 2: scientific statement from the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and Obesity Medicine Association (OMA). Surg Obes Relat Dis 2016 12:468-495. https://www.ncbi.nlm.nih.gov/pubmed/27050404

512. Aguilar D, Fernandez ML: Hypercholesterolemia induces adipose dysfunction in conditions of obesity and nonobesity. Adv Nutr 2014 5:497-502. https://www.ncbi.nlm.nih.gov/pubmed/25469381

513. Collins JM, Neville MJ, Pinnick KE, et al.: De novo lipogenesis in the differentiating human adipocyte can provide all fatty acids necessary for maturation. J Lipid Res 2011 52:1683-1692. https://www.ncbi.nlm.nih.gov/pubmed/21677304

514. Chung S, Parks JS: Dietary cholesterol effects on adipose tissue inflammation. Curr Opin Lipidol 2016 27:19-25. https://www.ncbi.nlm.nih.gov/pubmed/26655292

515. Christou GA, Kiortsis DN: Adiponectin and lipoprotein metabolism. Obes Rev 2013 14:939-949. https://www.ncbi.nlm.nih.gov/pubmed/23957239

516. Ebbert JO, Jensen MD: Fat depots, free fatty acids, and dyslipidemia. Nutrients 2013 5:498-508. https://www.ncbi.nlm.nih.gov/pubmed/23434905

517. Klop B, Elte JW, Cabezas MC: Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 2013 5:1218-1240. https://www.ncbi.nlm.nih.gov/pubmed/23584084

Additional references used in this section: [4][22][30][51][117][454]

Obesity and Non-alcoholic Fatty Liver Disease (NAFLD)

518. Choo VL, Viguiliouk E, Blanco Mejia S, et al.: Food sources of fructose-containing sugars and glycaemic control: systematic review and meta-analysis of controlled intervention studies. BMJ 2018 363:k4644. https://www.ncbi.nlm.nih.gov/pubmed/30463844

519. Jung UJ, Choi MS: Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 2014 15:6184-6223. https://www.ncbi.nlm.nih.gov/pubmed/24733068

520. Calzadilla Bertot L, Adams LA: The Natural Course of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2016 17

521. Kanda H, Tateya S, Tamori Y, et al.: MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006 116:1494-1505. https://www.ncbi.nlm.nih.gov/pubmed/16691291

522. Duwaerts CC, Maher JJ: Mechanisms of Liver Injury in Non-Alcoholic Steatohepatitis. Curr Hepatol Rep 2014 13:119-129. https://www.ncbi.nlm.nih.gov/pubmed/25045618

523. Saponaro C, Gaggini M, Carli F, et al.: The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients 2015 7:9453-9474. https://www.ncbi.nlm.nih.gov/pubmed/26580649

524. Barb D, Portillo-Sanchez P, Cusi K: Pharmacological management of nonalcoholic fatty liver disease. Metabolism 2016 65:1183-1195. https://www.ncbi.nlm.nih.gov/pubmed/27301803

525. Lee DH: Imaging evaluation of non-alcoholic fatty liver disease: focused on quantification. Clin Mol Hepatol 2017 23:290-301. https://www.ncbi.nlm.nih.gov/pubmed/28994271

526. Idilman IS, Keskin O, Celik A, et al.: A comparison of liver fat content as determined by magnetic resonance imaging-proton density fat fraction and MRS versus liver histology in non-alcoholic fatty liver disease. Acta Radiol 2016 57:271-278. https://www.ncbi.nlm.nih.gov/pubmed/25855666

527. Leoni S, Tovoli F, Napoli L, et al.: Current guidelines for the management of non-alcoholic fatty liver disease: A systematic review with comparative analysis. World J Gastroenterol 2018 24:3361-3373.

528. de Alwis NM, Anstee QM, Day CP: How to Diagnose Nonalcoholic Fatty Liver Disease. Dig Dis 2016 34 Suppl 1:19-26. https://www.ncbi.nlm.nih.gov/pubmed/27547937

529. Kneeman JM, Misdraji J, Corey KE: Secondary causes of nonalcoholic fatty liver disease. Therap Adv Gastroenterol 2012 5:199-207. https://www.ncbi.nlm.nih.gov/pubmed/22570680

530. Luukkonen PK, Sadevirta S, Zhou Y, et al.: Saturated Fat Is More Metabolically Harmful for the Human Liver Than Unsaturated Fat or Simple Sugars. Diabetes Care 2018 41:1732-1739. https://www.ncbi.nlm.nih.gov/pubmed/29844096

531. van der Windt DJ, Sud V, Zhang H, et al.: The Effects of Physical Exercise on Fatty Liver Disease. Gene Expr 2018 18:89-101.

Obesity and Cancer

532. Spyrou N, Avgerinos KI, Mantzoros CS, et al.: Classic and Novel Adipocytokines at the Intersection of Obesity and Cancer: Diagnostic and Therapeutic Strategies. Curr Obes Rep 2018 7:260-275. https://www.ncbi.nlm.nih.gov/pubmed/30145771

533. Golemis EA, Scheet P, Beck TN, et al.: Molecular mechanisms of the preventable causes of cancer in the United States. Genes Dev 2018 32:868-902. https://www.ncbi.nlm.nih.gov/pubmed/29945886

534. Druso JE, Fischbach C: Biophysical Properties of Extracellular Matrix: Linking Obesity and Cancer. Trends Cancer 2018 4:271-273. https://www.ncbi.nlm.nih.gov/pubmed/29606310

535. Islami F, Goding Sauer A, Gapstur SM, et al.: Proportion of Cancer Cases Attributable to Excess Body Weight by US State, 2011-2015. JAMA Oncol 2018 https://www.ncbi.nlm.nih.gov/pubmed/30589925

536. Sung H, Siegel RL, Torre LA, et al.: Global patterns in excess body weight and the associated cancer burden. CA Cancer J Clin 2018 https://www.ncbi.nlm.nih.gov/pubmed/30548482

537. Sung H, Siegel RL, Rosenberg PS, et al.: Emerging cancer trends among young adults in the USA: analysis of a populationbased cancer registry. Lancet Public Health 2019 https://www.ncbi.nlm.nih.gov/pubmed/30733056

538. Mackenzie H, Markar SR, Askari A, et al.: Obesity surgery and risk of cancer. Br J Surg 2018 105:1650-1657. https://www.ncbi.nlm.nih.gov/pubmed/30003539

539. Seiler A, Chen MA, Brown RL, et al.: Obesity, Dietary Factors, Nutrition, and Breast Cancer Risk. Curr Breast Cancer Rep 2018 10:14-27. 540.Liou GY, Storz P: Reactive oxygen species in cancer. Free Radic Res 2010 44:479-496.

541. Salehi B, Martorell M, Arbiser JL, et al.: Antioxidants: Positive or Negative Actors? Biomolecules 2018 8: https://www.ncbi.nlm.nih.gov/pubmed/30366441

542. Gorlach A, Dimova EY, Petry A, et al.: Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol 2015 6:372-385. https://www.ncbi.nlm.nih.gov/pubmed/26339717

543. Davidson KT, Zhu Z, Balabanov D, et al.: Beyond Conventional Medicine - a Look at Blueberry, a Cancer-Fighting Superfruit. Pathol Oncol Res 2018 24:733-738.

544. Turati F, Rossi M, Pelucchi C, et al.: Fruit and vegetables and cancer risk: a review of southern European studies. Br J Nutr 2015 113 Suppl 2:S102-110.

Additional references used in this section: [51][68]

Investigational Anti-obesity Pharmacotherapy

545. Bray G: Battle of the Bulge. Dorrance Publishing 2007 59.

546. Saxena A, Sachin K: A Network Biology Approach for Assessing the Role of Pathologic Adipose Tissues in Insulin Resistance Using Meta-analysis of Microarray Datasets. Curr Genomics 2018 19:630-666.

547. Srivastava G, Apovian C: Future Pharmacotherapy for Obesity: New Anti-obesity Drugs on the Horizon. Curr Obes Rep 2018 7:147-161. https://www.ncbi.nlm.nih.gov/pubmed/29504049

548. Xiong Y, Walker K, Min X, et al.: Long-acting MIC-1/GDF15 molecules to treat obesity: Evidence from mice to monkeys. Sci Transl Med 2017 9:https://www.ncbi.nlm.nih.gov/pubmed/29046435

549. Pocai A: Action and therapeutic potential of oxyntomodulin. Mol Metab 2014 3:241-251. https://www.ncbi.nlm.nih.gov/pubmed/24749050

550. Khatib MN, Gaidhane S, Gaidhane AM, et al.: Ghrelin O Acyl Transferase (GOAT) as a Novel Metabolic Regulatory Enzyme. J Clin Diagn Res 2015 9:Le01-05.

551. Zhang SR, Fan XM: Ghrelin-ghrelin O-acyltransferase system in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 2015 21:3214-3222. https://www.ncbi.nlm.nih.gov/pubmed/25805927

552. Chen J, Zhao H, Ma X, et al.: GLP-1/GLP-1R Signaling in Regulation of Adipocyte Differentiation and Lipogenesis. Cell Physiol Biochem 2017 42:1165-1176. https://www.ncbi.nlm.nih.gov/pubmed/28668964

553. Liu R, Li N, Lin Y, et al.: Glucagon Like Peptide-1 Promotes Adipocyte Differentiation via the Wnt4 Mediated Sequestering of Beta-Catenin. PLoS One 2016 11:e0160212. https://www.ncbi.nlm.nih.gov/pubmed/27504979

554. Guo C, Huang T, Chen A, et al.: Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages. Braz J Med Biol Res 2016 49:e5826. https://www.ncbi.nlm.nih.gov/pubmed/27878229

555. Wang A, Li T, An P, et al.: Exendin-4 Upregulates Adiponectin Level in Adipocytes via Sirt1/Foxo-1 Signaling Pathway. PloS One 2017 12:e0169469. https://www.ncbi.nlm.nih.gov/pubmed/28122026

556. Scott RV, Bloom SR: Problem or solution: The strange story of glucagon. Peptides 2018 100:36-41. https://www.ncbi.nlm.nih.gov/pubmed/29412829

557. Gantz I, Erondu N, Mallick M, et al.: Efficacy and safety of intranasal peptide YY3-36 for weight reduction in obese adults. J Clin Endocrinol Metab 2007 92:1754-1757. https://www.ncbi.nlm.nih.gov/pubmed/17341568

558. Scott R, Minnion J, Tan T, et al.: Oxyntomodulin analogue increases energy expenditure via the glucagon receptor. Peptides 2018 104:70-77. https://www.ncbi.nlm.nih.gov/pubmed/29680267

559. Persaud SJ, Bewick GA: Peptide YY: more than just an appetite regulator. Diabetologia 2014 57:1762-1769. https://www.ncbi.nlm.nih.gov/pubmed/24917132

560. Erondu N, Gantz I, Musser B, et al.: Neuropeptide Y5 receptor antagonism does not induce clinically meaningful weight loss in overweight and obese adults. Cell Metab 2006 4:275-282. https://www.ncbi.nlm.nih.gov/pubmed/17011500

561. Erondu N, Wadden T, Gantz I, et al.: Effect of NPY5R antagonist MK-0557 on weight regain after very-low-calorie diet-induced weight loss. Obesity (Silver Spring) 2007 15:895-905. https://www.ncbi.nlm.nih.gov/pubmed/17426325

562. Camilleri M, Acosta A: Combination Therapies for Obesity. Metab Syndr Relat Disord 2018 16:390-394. https://www.ncbi.nlm.nih.gov/pubmed/29993319

563. Frias JP, Nauck MA, Van J, et al.: Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 2018 392:2180-2193. https://www.ncbi.nlm.nih.gov/pubmed/30293770

564. Coskun T, Sloop KW, Loghin C, et al.: LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept. Mol Metab 2018 18:3-14. https://www.ncbi.nlm.nih.gov/pubmed/30473097

565. Alexiadou K, Anyiam O, Tan T: Cracking the combination: Gut hormones for the treatment of obesity and diabetes. J Neuroendocrinol 2018 e12664. https://www.ncbi.nlm.nih.gov/pubmed/30466162

566. Bessesen DH, Van Gaal LF: Progress and challenges in anti-obesity pharmacotherapy. Lancet Diabetes Endocrinol 2018 6:237- 248.

567. Bays HE, Weinstein R, Law G, et al.: Canagliflozin: effects in overweight and obese subjects without diabetes mellitus. Obesity (Silver Spring) 2014 22:1042-1049. https://www.ncbi.nlm.nih.gov/pubmed/24227660

568. Yabe D, Iwasaki M, Kuwata H, et al.: Sodium-glucose co-transporter-2 inhibitor use and dietary carbohydrate intake in Japanese individuals with type 2 diabetes: A randomized, open-label, 3-arm parallel comparative, exploratory study. Diabetes Obes Metab 2017 19:739-743. https://www.ncbi.nlm.nih.gov/pubmed/27990776

569. Morton NM, Seckl JR: 11beta-hydroxysteroid dehydrogenase type 1 and obesity. Front Horm Res 2008 36:146-164. https://www.ncbi.nlm.nih.gov/pubmed/18230901

570. Duerrschmid C, He Y, Wang C, et al.: Asprosin is a centrally acting orexigenic hormone. Nat Med 2017 23:1444-1453. https://www.ncbi.nlm.nih.gov/pubmed/29106398

571. Tassi E, Garman KA, Schmidt MO, et al.: Fibroblast Growth Factor Binding Protein 3 (FGFBP3) impacts carbohydrate and lipid metabolism. Sci Rep 2018 8:15973. https://www.ncbi.nlm.nih.gov/pubmed/30374109

572. Sonoda J, Chen MZ, Baruch A: FGF21-receptor agonists: an emerging therapeutic class for obesity-related diseases. Horm Mol Biol Clin Investig 2017 30: https://www.ncbi.nlm.nih.gov/pubmed/28525362

573. Achari AE, Jain SK: Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. Int J Mol Sci 2017 18: https://www.ncbi.nlm.nih.gov/pubmed/28635626

574. Smith SR, Garvey WT, Greenway FL, et al.: Coadministration of lorcaserin and phentermine for weight management: A 12-week, randomized, pilot safety study. Obesity (Silver Spring) 2017 25:857-865. https://www.ncbi.nlm.nih.gov/pubmed/28440045

575. Hollander P, Bays HE, Rosenstock J, et al.: Coadministration of Canagliflozin and Phentermine for Weight Management in Overweight and Obese Individuals Without Diabetes: A Randomized Clinical Trial. Diabetes Care 2017 40:632-639. https://www.ncbi.nlm.nih.gov/pubmed/28289041

576. Tam CS, Lecoultre V, Ravussin E: Novel strategy for the use of leptin for obesity therapy. Expert Opin Biol Ther 2011 11:1677-1685. https://www.ncbi.nlm.nih.gov/pubmed/21910668

577. Rossini AA: Why control blood glucose levels? Arch Surg 1976 111:229-233. https://www.ncbi.nlm.nih.gov/pubmed/816331

578. Ryan C: New controversies in hypertension: questions answered, answers questioned. Compr Ther 1992 18:20-24. https://www.ncbi.nlm.nih.gov/pubmed/1547598

579. Thompson WG: Cholesterol: myth or reality? South Med J 1990 83:435-440. https://www.ncbi.nlm.nih.gov/pubmed/2181692

580. Tobert JA: The cholesterol controversy. BMJ 1992 304:713. https://www.ncbi.nlm.nih.gov/pubmed/1571657

581. Bierman EL: The oral antidiabetic agents. Am Fam Physician 1976 13:98-104. https://www.ncbi.nlm.nih.gov/pubmed/1251792

582. Rys P, Wojciechowski P, Rogoz-Sitek A, et al.: Systematic review and meta-analysis of randomized clinical trials comparing efficacy and safety outcomes of insulin glargine with NPH insulin, premixed insulin preparations or with insulin detemir in type 2 diabetes mellitus. Acta Diabetol 2015 52:649-662. https://www.ncbi.nlm.nih.gov/pubmed/25585592

583. Mannucci E, Monami M, Masotti G, et al.: All-cause mortality in diabetic patients treated with combinations of sulfonylureas and biguanides. Diabetes Metab Res Rev 2004 20:44-47. https://www.ncbi.nlm.nih.gov/pubmed/14737744

584. Gerber JG, Freed CR, Nies AS: Antihypertensive pharmacology. West J Med 1980 132:430-439. https://www.ncbi.nlm.nih.gov/pubmed/6992462

585. Bays HE, Ballantyne C: What’s the deal with niacin development: is laropiprant add-on therapy a winning strategy to beat a straight flush? Curr Opin Lipidol 2009 20:467-476. https://www.ncbi.nlm.nih.gov/pubmed/19779335

586. Maki KC, Bays HE, Dicklin MR: Treatment options for the management of hypertriglyceridemia: strategies based on the best-available evidence. J Clin Lipidol 2012 6:413-426. https://www.ncbi.nlm.nih.gov/pubmed/23009777

587. Bays HE, Goldberg RB: The ‘forgotten’ bile acid sequestrants: is now a good time to remember? Am J Ther 2007 14:567-580. https://www.ncbi.nlm.nih.gov/pubmed/18090882

588. Muppidi A, Zou H, Yang PY, et al.: Design of Potent and Proteolytically Stable Oxyntomodulin Analogs. ACS Chem Biol 2016 11:324-328. https://www.ncbi.nlm.nih.gov/pubmed/26727558

Additional references used: [22][43][184][274][453][481]

Early versus Late Weight-management Intervention Illustrative Consequences

589. Jensen MD, Ryan DH, Apovian CM, et al.: 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J Am Coll Cardiol 2014 63:2985-3023. https://www.ncbi.nlm.nih.gov/pubmed/24239920

590. Garber AJ, Abrahamson MJ, Barzilay JI, et al.: American Association of Clinical Endocrinologists’ comprehensive diabetes management algorithm 2013 consensus statement—executive summary. Endocr Pract 2013 19:536-557. https://www.ncbi.nlm.nih.gov/pubmed/23816937

591. James PA, Oparil S, Carter BL, et al.: 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014 311:507-520. https://www.ncbi.nlm.nih.gov/pubmed/24352797

592. American Diabetes A: 8. Obesity Management for the Treatment of Type 2 Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019 42:S81-S89. https://www.ncbi.nlm.nih.gov/pubmed/30559234

Additional references used in this section: [4][30][117][369][498]

Bariatric Surgery

593. Neff KJ, Olbers T, le Roux CW: Bariatric surgery: the challenges with candidate selection, individualizing treatment and clinical outcomes. BMC Med 2013 11:8. https://www.ncbi.nlm.nih.gov/pubmed/23302153

594. Dixon JB: Referral for a bariatric surgical consultation: it is time to set a standard of care. Obes Surg 2009 19:641-644. https://www.ncbi.nlm.nih.gov/pubmed/19005734

595. Mechanick JI, Youdim A, Jones DB, et al.: Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient--2013 update: cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery. Obesity (Silver Spring) 2013 21 Suppl 1:S1-27. https://www.ncbi.nlm.nih.gov/pubmed/23529939

596. American College of Surgeons (ACS) and the American Society for Metabolic and Bariatric Surgery (ASMBS). Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program https://www.facs.org/quality-programs/mbsaqip (Accessed August 21, 2016).

597. Appachi S, Kashyap SR: ‘Adiposopathy’ and cardiovascular disease: the benefits of bariatric surgery. Curr Opin Cardiol 2013 28:540-546. https://www.ncbi.nlm.nih.gov/pubmed/23928918

598. Abbatini F, Capoccia D, Casella G, et al.: Long-term remission of type 2 diabetes in morbidly obese patients after sleeve gastrectomy. Surg Obes Relat Dis 2013 9:498-502. https://www.ncbi.nlm.nih.gov/pubmed/23290187

599. Choi J, Digiorgi M, Milone L, et al.: Outcomes of laparoscopic adjustable gastric banding in patients with low body mass index. Surg Obes Relat Dis 2010 6:367-371. https://www.ncbi.nlm.nih.gov/pubmed/20185374

600. Gianos M, Abdemur A, Fendrich I, et al.: Outcomes of bariatric surgery in patients with body mass index <35 kg/m2. Surg Obes Relat Dis 2012 8:25-30. https://www.ncbi.nlm.nih.gov/pubmed/22019140

601. Parikh M, Duncombe J, Fielding GA: Laparoscopic adjustable gastric banding for patients with body mass index of <or=35 kg/m2. Surg Obes Relat Dis 2006 2:518-522. https://www.ncbi.nlm.nih.gov/pubmed/17015204

602. Scopinaro N, Adami GF, Papadia FS, et al.: Effects of biliopanceratic diversion on type 2 diabetes in patients with BMI 25 to 35. Ann Surg 2011 253:699-703. https://www.ncbi.nlm.nih.gov/pubmed/21475009

603. Scinta W: Measuring Success: A Comparison of Weight Loss Calculations. Bariatric Times 2012 9:18-20.

604. Albaugh VL, Flynn CR, Tamboli RA, et al.: Recent advances in metabolic and bariatric surgery. F1000Res 2016 5: https://www.ncbi.nlm.nih.gov/pubmed/27239296

605. O’Brien P: Surgical Treatment of obesity. Endotext 2000 https://www.ncbi.nlm.nih.gov/pubmed/25905316

606. Zepeda Mejia IA, Rogula T: Laparoscopic single-incision gastric bypass: initial experience, technique and short-term outcomes. Ann Surg Innov Res 2015 9:7. https://www.ncbi.nlm.nih.gov/pubmed/26473005

607. Palermo M, Acquafresca PA, Rogula T, et al.: Late surgical complications after gastric by-pass: a literature review. Arq Bras Cir Dig 2015 28:139-143. https://www.ncbi.nlm.nih.gov/pubmed/26176254

608. Weng TC, Chang CH, Dong YH, et al.: Anaemia and related nutrient deficiencies after Roux-en-Y gastric bypass surgery: a systematic review and meta-analysis. BMJ Open 2015 5:e006964. https://www.ncbi.nlm.nih.gov/pubmed/26185175

609. Stefater MA, Wilson-Perez HE, Chambers AP, et al.: All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr Rev 2012 33:595-622. https://www.ncbi.nlm.nih.gov/pubmed/22550271

610. Kodner C, Hartman DR: Complications of adjustable gastric banding surgery for obesity. Am Fam Physician 2014 89:813-818. https://www.ncbi.nlm.nih.gov/pubmed/24866217

611. Dixon JB, Straznicky NE, Lambert EA, et al.: Laparoscopic adjustable gastric banding and other devices for the management of obesity. Circulation 2012 126:774-785. https://www.ncbi.nlm.nih.gov/pubmed/22869859

612. Anderson B, Gill RS, de Gara CJ, et al.: Biliopancreatic diversion: the effectiveness of duodenal switch and its limitations. Gastroenterol Res Pract 2013 2013:974762. https://www.ncbi.nlm.nih.gov/pubmed/24639868

613. Billeter AT, Fischer L, Wekerle AL, et al.: Malabsorption as a Therapeutic Approach in Bariatric Surgery. Viszeralmedizin 2014 30:198-204. https://www.ncbi.nlm.nih.gov/pubmed/26288594

614. Sullivan S, Stein R, Jonnalagadda S, et al.: Aspiration therapy leads to weight loss in obese subjects: a pilot study. Gastroenterology 2013 145:1245-1252 e1241-1245. https://www.ncbi.nlm.nih.gov/pubmed/24012983

615. Sarr MG, Billington CJ, Brancatisano R, et al.: The EMPOWER study: randomized, prospective, double-blind, multicenter trial of vagal blockade to induce weight loss in morbid obesity. Obes Surg 2012 22:1771-1782. https://www.ncbi.nlm.nih.gov/pubmed/22956251

616. Kumar N, Sullivan S, Thompson CC: The role of endoscopic therapy in obesity management: intragastric balloons and aspiration therapy. Diabetes Metab Syndr Obes 2017 10:311-316. https://www.ncbi.nlm.nih.gov/pubmed/28740414

617. Jain D, Bhandari BS, Arora A, et al.: Endoscopic Sleeve Gastroplasty - A New Tool to Manage Obesity. Clin Endosc 2017 https://www.ncbi.nlm.nih.gov/pubmed/28607328

618. Hill C, Khashab MA, Kalloo AN, et al.: Endoluminal weight loss and metabolic therapies: current and future techniques. Ann N Y Acad Sci 2017 https://www.ncbi.nlm.nih.gov/pubmed/28884820

619. Celio AC, Pories WJ: A History of Bariatric Surgery: The Maturation of a Medical Discipline. Surg Clin North Am 2016 96:655-667. https://www.ncbi.nlm.nih.gov/pubmed/27473793

620. Kim SH, Chun HJ, Choi HS, et al.: Current status of intragastric balloon for obesity treatment. World J Gastroenterol 2016 22:5495-5504. https://www.ncbi.nlm.nih.gov/pubmed/27350727

621. Imaz I, Martinez-Cervell C, Garcia-Alvarez EE, et al.: Safety and effectiveness of the intragastric balloon for obesity. A meta-analysis. Obes Surg 2008 18:841-846. https://www.ncbi.nlm.nih.gov/pubmed/18459025

622. Frattini F, Rausei S, Boni L, et al.: Gastric plication: how to decrease the size of the stomach without transection. Surg Technol Int 2013 23:84-87. https://www.ncbi.nlm.nih.gov/pubmed/24081847

623. Herron D, Roohipour R: Complications of Roux-en-Y gastric bypass and sleeve gastrectomy. Abdom Imaging 2012 37:712-718. https://www.ncbi.nlm.nih.gov/pubmed/22388668

624. Rogalski P, Daniluk J, Baniukiewicz A, et al.: Endoscopic management of gastrointestinal perforations, leaks and fistulas. World J Gastroenterol 2015 21:10542-10552. https://www.ncbi.nlm.nih.gov/pubmed/26457014

625. Chivot C, Robert B, Lafaye N, et al.: Laparoscopic sleeve gastrectomy: imaging of normal anatomic features and postoperative gastrointestinal complications. Diagn Interv Imaging 2013 94:823-834. https://www.ncbi.nlm.nih.gov/pubmed/23707144

626. Davidson JP, Connelly TM, Libove E, et al.: Gastropericardial fistula: radiologic findings and literature review. J Surg Res 2016 203:174-182. https://www.ncbi.nlm.nih.gov/pubmed/27338548

627. Pauli EM, Beshir H, Mathew A: Gastrogastric fistulae following gastric bypass surgery-clinical recognition and treatment. Curr Gastroenterol Rep 2014 16:405. https://www.ncbi.nlm.nih.gov/pubmed/25113040

628. Spivak H, Favretti F: Avoiding postoperative complications with the LAP-BAND system. Am J Surg 2002 184:31S-37S. https://www.ncbi.nlm.nih.gov/pubmed/12527348

629. Rausa E, Bonavina L, Asti E, et al.: Rate of Death and Complications in Laparoscopic and Open Roux-en-Y Gastric Bypass. A Metaanalysis and Meta-regression Analysis on 69,494 Patients. Obes Surg 2016 26:1956-1963. https://www.ncbi.nlm.nih.gov/pubmed/27189352

630. Karcz WK, Blazejczyk K, Wellner UF, et al.: [Internal hernias after bariatric surgery]. Chirurg 2015 86:855-860. https://www.ncbi.nlm.nih.gov/pubmed/26319178

631. Azagury D, Liu RC, Morgan A, et al.: Small bowel obstruction: A practical step-by-step evidence-based approach to evaluation, decision making, and management. J Trauma Acute Care Surg 2015 79:661-668. https://www.ncbi.nlm.nih.gov/pubmed/26402543

632. Levine MS, Carucci LR: Imaging of bariatric surgery: normal anatomy and postoperative complications. Radiology 2014 270:327-341. https://www.ncbi.nlm.nih.gov/pubmed/24471382

633. Lewis KD, Takenaka KY, Luber SD: Acute Abdominal Pain in the Bariatric Surgery Patient. Emerg Med Clin North Am 2016 34:387-407. https://www.ncbi.nlm.nih.gov/pubmed/27133251

634. Merkle EM, Hallowell PT, Crouse C, et al.: Roux-en-Y gastric bypass for clinically severe obesity: normal appearance and spectrum of complications at imaging. Radiology 2005 234:674-683. https://www.ncbi.nlm.nih.gov/pubmed/15650038

635. Mancini MC: Bariatric surgery—an update for the endocrinologist. Arq Bras Endocrinol Metabol 2014 58:875-888. https://www.ncbi.nlm.nih.gov/pubmed/25627042

636. Ritz P, Hanaire H: Post-bypass hypoglycaemia: a review of current findings. Diabetes Metab 2011 37:274-281. https://www.ncbi.nlm.nih.gov/pubmed/21676638

637. Monkhouse SJ, Morgan JD, Norton SA: Complications of bariatric surgery: presentation and emergency management—a review. Ann R Coll Surg Engl 2009 91:280-286. https://www.ncbi.nlm.nih.gov/pubmed/19344551

638. Mechanick JI, Kushner RF, Sugerman HJ, et al.: American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery Medical Guidelines for Clinical Practice for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient. Surg Obes Relat Dis 2008 4:S109-184. https://www.ncbi.nlm.nih.gov/pubmed/18848315 

639. Jans G, Matthys C, Bogaerts A, et al.: Maternal micronutrient deficiencies and related adverse neonatal outcomes after bariatric surgery: a systematic review. Adv Nutr 2015 6:420-429. https://www.ncbi.nlm.nih.gov/pubmed/26178026

640. Balaji M, Ganjayi MS, Hanuma Kumar GE, et al.: A review on possible therapeutic targets to contain obesity: The role of phytochemicals. Obes Res Clin Pract 2016 10:363-380. https://www.ncbi.nlm.nih.gov/pubmed/26740473

641. Cilla A, Alegria A, Attanzio A, et al.: Dietary phytochemicals in the protection against oxysterol-induced damage. Chem Phys Lipids 2017 207:192-205. https://www.ncbi.nlm.nih.gov/pubmed/28267434

642. Liu RH: Health-promoting components of fruits and vegetables in the diet. Adv Nutr 2013 4:384S-392S. https://www.ncbi.nlm.nih.gov/pubmed/23674808

643. Tripkovic L, Wilson LR, Hart K, et al.: Daily supplementation with 15 mug vitamin D2 compared with vitamin D3 to increase wintertime 25-hydroxyvitamin D status in healthy South Asian and white European women: a 12-wk randomized, placebo-controlled food-fortification trial. Am J Clin Nutr 2017 106:481-490. https://www.ncbi.nlm.nih.gov/pubmed/28679555

644. Armas LA, Hollis BW, Heaney RP: Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab 2004 89:5387-5391. https://www.ncbi.nlm.nih.gov/pubmed/15531486

645. Parrott J, Frank L, Rabena R, et al.: American Society for Metabolic and Bariatric Surgery Integrated Health Nutritional Guidelines for the Surgical Weight Loss Patient 2016 Update: Micronutrients. Surg Obes Relat Dis 2017 13:727-741. https://www.ncbi.nlm.nih.gov/pubmed/28392254

646. Mingrone G, Bornstein S, Le Roux CW: Optimisation of follow-up after metabolic surgery. Lancet Diabetes Endocrinol 2018 6:487-499. Additional references used in this section: [23][51][118][309][511]

Executive Summary

647. Sharma AM, Kushner RF: A proposed clinical staging system for obesity. Int J Obes (Lond) 2009 33:289-295. https://www.ncbi.nlm.nih.gov/pubmed/19188927

1.Souza SA, Silva AB, Cavalcante UMB, Lima CMBL, Souza TC. Obesidade adulta nas nações: uma análise via modelos de regressão beta. Cad Saúde Pública. 2018;34(8):e00161417. Epub Aug 20, 2018.

2.Sociedade Brasileira de Pediatria. Avaliação nutricional da criança e do adolescente – Manual de Orientação/Sociedade Brasileira de Pediatria. Departamento de Nutrologia. São Paulo: Sociedade Brasileira de Pediatria. Departamento de Nutrologia; 2009.

3.Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012;7(4):284-94.

4.NCD Risk Factor Collaboration (NCD-RisC) (2017). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet (London, England). 390(10113):2627-42.

5.Sweeting HN. Measurement and definitions of obesity in childhood and adolescence: a field guide for the uninitiated. Nutr J. 2007;6:32.

6.Lobstein T. Prevalências e tendências ao redor do mundo. In: Frelut ML. (ed.). The ECOG’s ebook on child and adolescent obesity; 2013. Retirado de ebook.ecog-obesity.eu.

7.Souza MN. Um panorama do sobrepeso e obesidade adulta: perspectivas para o conjunto das capitais estaduais até 2030 [dissertação]. Belo Horizonte: UFMG, Programa de pós-graduação em Demografia do Centro de Desenvolvimento e Planejamento Regional da Faculdade de Ciências Econômicas da Universidade Federal de Minas Gerais; 2016.

8.WHO Library Cataloguing-in-Publication Data Global status report on noncommunicable diseases 2014. 1. Chronic Disease – prevention and control. 2. Chronic Disease – epidemiology. 3. Chronic Disease – mortality. 4. Cost of Illness. 5. Delivery of Health Care. I. World Health Organization. Disponível em: https://apps.who.int/iris/bitstream/handle/10665/148114/9789241564854_eng.pdf;jsessionid=96F308095A010194BCC647E66656AC58?sequence=1; acessado em 25 de maio de 2021.

9.Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008;32(9):1431-7.

10.NCD Risk Factor Collaboration (NCD-RisC) – Africa Working Group. Trends in obesity and diabetes across Africa from 1980 to 2014: an analysis of pooled population-based studies. Int J Epi Demiol. 2017;46(5):1421-32.

11.NCD Risk Factor Collaboration (NCD-RisC): Americas Working Group. Trends in cardiometabolic risk factors in the Americas between 1980 and 2014: a pooled analysis of population-based surveys [published correction appears in Lancet Glob Health. 2020 May;8(5):e648]. Lancet Glob Health. 2020;8(1):e123-e133.

12.OECD, Health at a glance 2019: OECD Indicators. Paris: OECD Publishing; 2019.

13.OCDE (2020). População com sobrepeso ou obesidade (indicador).

14.Oliveira CL, Fisberg M. Obesidade na infância e adolescência: uma verdadeira epidemia. Arq Bras Endocrinol Metab. 2003 Abr;47(2):107-8. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S000427302003000200001&lng=pt.; acessado em: 6 de julho de 2021.

15.Leão LSCS, Araújo LMB, Moraes LTLP, Assis AM. Prevalência de obesidade em escolares de Salvador, Bahia. Arq Bras Endocrinol Metab. 2003 Abr;47(2):151-7. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S000427302003000200007&lng=pt.; acessado em: 6 de julho de 2021.

16.Silva GAP, Balaban G, Nascimento EMM, Baracho JDS, Freitas MMV. Prevalência de sobrepeso e obesidade em adolescentes de uma escola da rede pública do Recife. Rev Bras. Saude Mater Infant. 2002 Apr;2(1):37-42. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S151938292002000100006&lng=en. https://doi.org/10.1590/S1519-38292002000100006; acessado em 5 de julho de 2021.

17.Simon VGN, Souza JMP, Souza SB. Aleitamento materno, alimentação complementar, sobrepeso e obesidade em pré-escolares. Rev Saúde Pública. 2009 Feb;43(1):60-9. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-89102009000100008&lng=en. https://doi.org/10.1590/S0034-89102009000100008; acessado em 5 de julho de 2021.

18.Malta DC, Andrade SC, Claro RM, Bernal RTI, Monteiro CA. Evolução anual da prevalência de excesso de peso e obesidade em adultos nas capitais dos 26 estados brasileiros e no Distrito Federal entre 2006 e 2012. Rev Bras Epidemiol. 2014;17(Suppl.1):267-76. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415790X2014000500267&lng=en. https://doi.org/10.1590/1809-4503201400050021; acessado em 5 de julho de 2021.

19.Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Análise em Saúde e Vigilância de Doenças não Transmissíveis. Vigitel Brasil 2018: vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico: estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados brasileiros e no Distrito Federal em 2018 / Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Análise em Saúde e Vigilância de Doenças não Transmissíveis. – Brasília: Ministério da Saúde, 2019. 132.: il. Disponível em: http://bvsms.saude.gov.br/bvs/publicacoes/vigitel_brasil_2018_vigilancia_fatores_risco.pdf ISBN 978-85-334-2705-1.

20.Ministério da Saúde. Sistema de Vigilância Alimentar e Nutricional – Sisvan. Disponível em: https://sisaps.saude.gov.br/sisvan/relatoriopublico/index.

21.Finer N, Garnett SP, Bruun JM. Covid-19 e obesidade. Clin Obes. 2020 Jun;10(3):e12365.

22.Garg S, Kim L, Whitaker M, O’Halloran A, Cummings C, Holstein R, et al. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019 – Covid-NET, 14 States, March 1-30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(15):458-64.

23.Chua MWJ, Zheng S. Obesidade e Covid-19: O choque de duas pandemias. Obes Res Clin Pract. 2020 Jun 25: S1871-403X (20) 30315-X.

24.Sockalingam S, Leung SE, Cassin SE. The impact of coronavirus disease 2019 on bariatric surgery: redefining psychosocial care. Obesity (Silver Spring). 2020;28(6):1010-2.

25.Carter SJ, Baranauskas MN, Fly AD. Considerations for obesity, vitamin D, and physical activity amid the Covid-19 pandemic. Obesity (Silver Spring). 2020;28(7):1176-7.

 

1.Ribas-Filho D, Suen VMM (coords.). Tratado de nutrologia. 2.ed. Barueri: Manole; 2018.

2.Lobstein T, Rigby N, Leach R. International Obesity Task Force (IOTF). Brussels: EASO; 2005.

3.Halpern A. et al. Consenso Latino-Americano sobre Obesidade; 1998.

4.Consenso Latino-Americano em Obesidade. Documentos. C2. Health Latin America. Rio de Janeiro: Abeso; 2002.

5.Nogueira-de-Almeida CA, Mello ED. Nutrologia pediátrica: prática baseada em evidências. Barueri: Manole; 2016.

6.Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica (Abeso). Diretrizes brasileiras de obesidade 2016. 4.ed. São Paulo: Abeso; 2016. p.13-52. Disponível em: https://abeso.org.br/wp-content/uploads/2019/12/Diretrizes-Download-Diretrizes-Brasileiras-de-Obesidade-2016.pdf; acessado em: 7 de agosto de 2021.

7.Eknoyan G. Adolphe Quetelet (1796-1874) – the average man and indices of obesity. Nephrol Dial Transplant. 2008;23(1):47-51.

8.World Health Organization. Obesity: preventing and managing the global epidemic – report of a WHO Consultation. Geneva: World Health Organization; 1998.

9.Kyle UG, Genton L, Pichard C. Body composition: what’s new? Curr Opin Clin Nutr Metab Care. 2002;5(4):427-33.

10.Stolarczyk LM, Heyward VH, van Loan MD, Hicks VL, Wilson WL, Reano LM. The fatness-specific bioelectrical impedance analysis equations of Segal et al.: are they generalizable and practical? Am J Clin Nutr. 1997;66(1):8-17.

11.Lutoslawska G, Malara M, Tomaszewski P, Mazurek K, Czajkowska A, Kêska A et al. Relationship between the percentage of body fat and surrogate indices of fatness in male and female Polish active and sedentary students. J Physiol Anthropol. 2014;33(1):10.

12.Beechy L, Galpern J, Petrone A, Das SK. Assessment tools in obesity: psychological measures, diet, activity, and body composition. Physiol Behav. 2012;107(1):154-71.

13.Van Itallie TB, Yang MU, Heymsfield SB, Funk RC, Boileau RA. Height-normalized indices of the body’s fat-free mass and fat mass: potentially useful indicators of nutritional status. Am J Clin Nutr. 1990;52(6):953-9.

14.World Health Organization. Weight-for-age (5-10 years). Disponível em: https://www.who.int/growthref/who2007_weight_for_age/en/; acessado em: 7 de agosto de 2021.

15.Conde WL, Monteiro CA. Body mass index cutoff points for evaluation of nutritional status in Brazilian children and adolescents. J Pediatr (Rio J). 2006;82(4):266-72.

16.World Health Organization. Physical status: the use and interpretation of anthropometry – report of a WHO Expert Committee. World Health Organ Tech Rep Ser. 1995;854:1-452.

17.Ward LC. Human body composition: yesterday, today, and tomorrow. Eur J Clin Nutr. 2018;72(9):1201-7.

18.Rivas RC, Andries Junior O. Comparação entre a classificação do índice de massa corporal e da quantidade de gordura corporal. Corpoconsciência. 2006;10(2):30-40.

19.Eickemberg M, Oliveira CC, Roriz AKC, Sampaio LR. Bioimpedância elétrica e sua aplicação em avaliação nutricional. Rev Nutr. 2011;24(6):883-93.

20.Souza RGM, Gomes AC, Prado CMM, Mota JF. Methods for body composition analysis in obese adults. Rev Nutr. 2014;27(5):569-83.

21.Wagner DR, Heyward VH. Techniques of body composition assessment: a review of laboratory and field methods. Res Q Exerc Sport. 1999;70(2):135-49.

22.Borga MRI. Adipose tissue and muscle composition analysis. A J Investig Med. 2018;66:887-95.

23.Palladino MV, Damas KF, Tucunduva MJ. Estudo do índice de massa corpórea por meio da tomografia computadorizada. Sci Health. 2011;2(1):5-10.

24.Gouvêa HR, Faria SL, Faria OP, Cardeal MA, Bezerra A, Ito MK. Validation of ultrasound examination for assessment of the abdominal visceral fat in clinically serious obese patient. ABCD Arq Bras Cir Dig. 2013;26(Suppl 1):43-6.

 

1.Reaven GM. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595-607.

2.Félix NDC, Nóbrega MML. Síndrome metabólica: análise conceitual no contexto da enfermagem. Rev Lat Am Enfermagem. 2019;27.

3.Sociedade Brasileira de Diabetes. Diretrizes da Sociedade Brasileira de Diabetes 2019-2020. São Paulo: Clannad; 2019.

4.Al-Hamad D, Raman V. Metabolic syndrome in children and adolescents. Transl Pediatr. 2017;6(4): 397-407.

5.Ramires EKNM, Menezes RCE, Longo-Silva G, Santos TG, Marinho PM, Silveira JAC. Prevalence and factors associated with metabolic syndrome among brazilian adult population: National Health Survey – 2013. Arq Bras Cardiol. 2018;110:455-66.

6.Nogueira-de-Almeida CA, Mello ED. Síndrome metabólica. In: Nogueira-de-Almeida CA, Mello ED (eds.). Nutrologia pediátrica: prática baseada em evidências. Barueri: Manole; 2016. p.157-68.

7.Fontelles CC, Guido LN, Andrade FO, Ong TP. Nutrição e epigenética. In: Dal Bosco SM, Genro JP (eds.). Nutrigenética e implicações na saúde humana. São Paulo: Atheneu; 2014. p.179-200.

8.Lopes VP, Maia JAR. Períodos críticos ou sensíveis: revisitar um tema polêmico à luz da investigação empírica. Rev Paul Educ Fís. 2000;14(2):128-40.

9.Huang C, Cerrell SG, Kissane B, Bates N, Alipui N, Isaacs S. Why 1,000 days. 2020. Disponível em: https://thousanddays.org/why-1000-days; acessado em: 10 de agosto de 2021.

10.Nogueira-de-Almeida CA. We need to look at the comorbidities of obesity during childhood and adolescence. Biom J Sci Tech Res. 2017;1(7):2.

11.Hong Y, Pedersen NL, Brismar K, De Faire U. Genetic and environmental architecture of the features of the insulin-resistance syndrome. Am J Human Gen. 1997;60(1):143.

12.Thota P, Perez-Lopez FR, Benites-Zapata VA, Pasupuleti V, Hernandez AV. Obesity-related insulin resistance in adolescents: a systematic review and meta-analysis of observational studies. Gynecol Endocrinol. 2017;33(3):179-84.

13.Greenfield MS, Doberne L, Kraemer F, Tobey T, Reaven G. Assessment of insulin resistance with the insulin suppression test and the euglycemic clamp. Diabetes. 1981;30(5):387-92.

14.Xavier HT, Izar M, Faria Neto J, Assad M, Rocha V, Sposito A, et al. V Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose. Arq Bras Cardiol. 2013;101(4):1-20.

15.Cook S, Weitzman M, Auinger P, Nguyen M, Dietz WH. Prevalence of a metabolic syndrome phenotype in adolescents: findings from the third National Health and Nutrition Examination Survey, 1988-1994. Arch Ped Adolesc Med. 2003;157(8):821-7.

16.Styne DM, Arslanian SA, Connor EL, Farooqi IS, Murad MH, Silverstein JH, et al. Pediatric obesity: assessment, treatment, and prevention – an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2017;102(3):709-57.

17.Rodríguez-Morán M, Salazar-Vázquez B, Violante R, Guerrero-Romero F. Metabolic syndrome among children and adolescents aged 10-18 years. Diabetes Care. 2004;27(10):2516-7.

18.Strufaldi MWL, Da Silva EMK, Puccini RF. Metabolic syndrome among prepubertal Brazilian school children. Diabetes Vasc Dis Res. 2008;5(4):291-7.

19.Pinho AP, Brunetti IL, Pepato MT, Almeida C. Metabolic syndrome in overweight/obese female adolescents. Rev Paul Pediatr. 2012;30(1):51-6.

20.Burrows R, Correa-Burrows P, Reyes M, Blanco E, Albala C, Gahagan S. Healthy Chilean adolescents with HOMA-IR≥2.6 have increased cardiometabolic risk: association with genetic, biological, and environmental factors. J Diabetes Res. 2015;(1-8).

21.Reilly JJ, Armstrong J, Dorosty AR, Emmett PM, Ness A, Rogers I, et al. Early life risk factors for obesity in childhood: cohort study. BMJ. 2005;330(7504).

22.Ten S, Maclaren N. Insulin resistance syndrome in children. J Clin Endocrinol Metab. 2004;89(6): 2526-39.

23.Brasil AR. Crianças e adolescentes com sobrepeso ou obesidade: avaliação da reação inflamatória através da dosagem de proteína C reativa ultra-sensível e prevalência de síndrome metabólica. Belo Horizonte: UFMG; 2006.

24.Moran A, Jacobs Jr. DR, Steinberger J, Hong CP, Prineas R, Luepker R, et al. Insulin resistance during puberty: results from clamp studies in 357 children. Diabetes. 1999;48(10):2039-44.

25.Sinaiko AR, Steinberger J, Moran A, Prineas RJ, Vessby B, Basu S, et al. Relation of body mass index and insulin resistance to cardiovascular risk factors, inflammatory factors, and oxidative stress during adolescence. Circulation. 2005;111(15):1985-91.

26.Cuartero BG, Lacalle CG, Lobo CJ, Vergaz AG, Rey CC, Villar MJA, et al. Indice HOMA y QUICKI, insulina y péptido C en niños sanos. Puntos de corte de riesgo cardiovascular. An Pediatr (Barc). 2007;66(5):481-90.

27.Lee SH, Ahn MB, Choi YJ, Kim SK, Kim SH, Cho WK, et al. A comparison of different criteria for the definition of insulin resistance and its relationship to metabolic risk in children and adolescents. J Korean Soc Pediatr Endocrinol. 2020;25(4):227-33.

28.Nogueira-de-Almeida CA, Pinho AP, Ricco RG, Pepato MT, Brunetti IL. Determination of glycemia and insulinemia and the homeostasis model assessment (HOMA) in schoolchildren and adolescents with normal body mass index. J Pediatr (Rio J). 2008;84(2):136-40.

29.Mieldazis SF, Azzalis LA, Junqueira VB, Souza FI, Sarni RO, Fonseca FL. Hyperinsulinism assessment in a sample of prepubescent children. J Pediatr (Rio J). 2010;86(3):245-9.

30.Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, et al. Obesity and the metabolic syndrome in children and adolescents. N Eng J Med. 2004;350(23):2362-74.

31.DeBoer MD. Assessing and managing the metabolic syndrome in children and adolescents. Nutrients. 2019;11(8).

32.Christian Flemming GM, Bussler S, Körner A, Kiess W. Definition and early diagnosis of metabolic syndrome in children. J Pediatr Endocrinol Metab. 2020;33(7):821-33.

33.Damiani D, Kuba VM, Cominato L, Damiani D, Dichtchekenian V, Menezes Filho HC. Síndrome metabólica em crianças e adolescentes: dúvidas na terminologia, mas não nos riscos cardiometabólicos. Arq Bras Endocrinol Metab. 2011;55:576-82.

34.Weihe P, Weihrauch-Blüher S. Metabolic syndrome in children and adolescents: diagnostic criteria, therapeutic options and perspectives. Curr Obes Rep. 2019;8(4):472-9.

35.Ferranti SD, Gauvreau K, Ludwig DS, Neufeld EJ, Newburger JW, Rifai N. Prevalence of the metabolic syndrome in American adolescents. Circulation. 2004;110(16):2494-7.

36.Zimmet P, Alberti KGMM, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents: an IDF consensus report. Ped Diabetes. 2007;8(5):299-306.

37.Ahrens W, Moreno LA, Mårild S, Molnár D, Siani A, De Henauw S, et al. Metabolic syndrome in young children: definitions and results of the IDEFICS study. Int J Obes. 2014;38(S2):S4-14.

38.Engelmann G, Lenhartz H, Grulich-Henn J. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004;351(11):1146-8; author reply 1146-8.

39.Mokha JS, Srinivasan SR, DasMahapatra P, Fernandez C, Chen W, Xu J, et al. Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: The Bogalusa Heart Study. BMC Pediatr. 2010;10(1).

40.Nogueira-de-Almeida CA, Hirose TS, Zorzo RA, Vilanova KCM, Ribas-Filho D. Critério da Associação Brasileira de Nutrologia para diagnóstico e tratamento da síndrome metabólica em crianças e adolescentes. Int J Nutrol. 2020;13(03):54-68.

41.Olza J, Gil-Campos M, Leis R, Bueno G, Aguilera CM, Valle M, et al. Presence of the metabolic syndrome in obese children at prepubertal age. Ann Nutr Metab. 2011;58(4):343-50.

42.Nogueira-de-Almeida CA. Metabolic syndrome definition in adolescents should incorporate insulin resistance. Ann Pediatr Endocrinol Metab. 2020;25(4):287-8.

43.Nogueira-de-Almeida CA, de Mello ED. Different criteria for the definition of insulin resistance and its relation with dyslipidemia in overweight and obese children and adolescents. Pediatr Gastroenterol Hepatol Nutr. 2018;21(1):59-67.

44.Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140(3):e20171904.

45.Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(Supplement 5):S213-56.

46.Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Eng J Med. 2002;346(6): 393-403.

47.Whitlock EP, O’Conner EA, Williams SB, Beil TL, Lutz KW. Effectiveness of primary care interventions for weight management in children and adolescents: an updated, targeted systematic review for the USPSTF. Rockville (MD): Agency for Healthcare Research and Quality (US); 2010.

48.Kelly AS, Auerbach P, Barrientos-Perez M, Gies I, Hale PM, Marcus C, et al. A randomized, controlled trial of liraglutide for adolescents with obesity. N Engl J Med. 2020;382(22):2117-28.

49.Brasil. Agência Nacional de Vigilância Sanitária (Anvisa). Saxenda (liraglutida): nova indicação. Brasília: Anvisa; 2020. Disponível em: https://www.gov.br/anvisa/pt-br/assuntos/medicamentos/novos-medicamentos-e-indicacoes/saxenda-liraglutida-nova-indicacao; acessado em: 10 de agosto de 2021.

50.Inge TH, Courcoulas AP, Jenkins TM, Michalsky MP, Helmrath MA, Brandt ML, et al. Weight loss and health status 3 years after bariatric surgery in adolescents. N Eng J Med. 2015;374(2):113-23.

51.McGuire S. US Department of Agriculture and US Department of Health and Human Services, Dietary guidelines for Americans, 2010. 7th edition. Washington, DC: US Government Printing Office, January 2011. Adv Nutr. 2011;2(3):293-4.

52.Magge SN, Goodman E, Armstrong SC. The metabolic syndrome in children and adolescents: shifting the focus to cardiometabolic risk factor clustering. Pediatrics. 2017;140(2):e20171603.

53.Al-Hamad D, Raman V. Metabolic syndrome in children and adolescents. Transl Pediatr. 2017; 6(4):397-407.

54.Fornari E, Maffeis C. Treatment of metabolic syndrome in children. Front Endocrinol (Lausanne). 2019;10:702.

55.Jääskeläinen A, Schwab U, Kolehmainen M, Pirkola J, Järvelin MR, Laitinen J. Associations of meal frequency and breakfast with obesity and metabolic syndrome traits in adolescents of Northern Finland Birth Cohort 1986. Nutr Metab Cardiovasc Dis. 2013;23(10):1002-9.

56.Jung CH, Lee JS, Ahn HJ, Choi JS, Noh MY, Lee JJ, et al. Association of meal frequency with metabolic syndrome in Korean adults: from the Korea National Health and Nutrition Examination Survey (KNHANES). Diabetol Metab Syndr. 2017;9:77.

57.Dehghan M, Akhtar-Danesh N, Merchant AT. Childhood obesity, prevalence and prevention. Nutr J. 2005;4(1):24.

58.Pedroni JL, Rech RR, Halpern R, Marin S, Roth LdR, Sirtoli M, et al. Prevalência de obesidade abdominal e excesso de gordura em escolares de uma cidade serrana no Sul do Brasil. Cienc Saúde Coletiva. 2013;18:1417-25.

59.Silva FM, Steemburgo T, Azevedo MJ, Mello VD. Papel do índice glicêmico e da carga glicêmica na prevenção e no controle metabólico de pacientes com diabetes melito tipo 2. Arq Bras Endocrinol Metab. 2009;53:560-71.

60.Carvalho GQ, Alfenas RCG. Índice glicêmico: uma abordagem crítica acerca de sua utilização na prevenção e no tratamento de fatores de risco cardiovasculares. Rev Nutr. 2008;21:577-87.

61.Scott SN, Anderson L, Morton JP, Wagenmakers AJM, Riddell MC. Carbohydrate restriction in type 1 diabetes: a realistic therapy for improved glycaemic control and athletic performance? Nutrients. 2019;11(5).

62.Sadeghi A, Mousavi SM, Mokhtari T, Parohan M, Milajerdi A. Metformin therapy reduces obesity indices in children and adolescents: a systematic review and meta-analysis of randomized clinical trials. Child Obes. 2020;16(3):174-91.

63.Group DPPR. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Eng J Med. 2002;346(6):393-403.

64.Ribas-Filho D, Suen VMM. Tratado de nutrologia. 2.ed. Barueri: Manole; 2018.

65.Group DPPR. Long-term effects of metformin on diabetes prevention: identification of subgroups that benefited most in the diabetes prevention program and diabetes prevention program outcomes study. Diabetes Care. 2019;10.2337/dc18-1970:dc181970.

66.Khokhar A, Umpaichitra V, Chin VL, Perez-Colon S. Metformin use in children and adolescents with prediabetes. Pediatr Clin North Am. 2017;64(6):1341-53.

67.Quinn SM, Baur LA, Garnett SP, Cowell CT. Treatment of clinical insulin resistance in children: a systematic review. Obes Rev. 2009;11(10):722-30.

68.Park MH, Kinra S, Ward KJ, White B, Viner RM. Metformin for obesity in children and adolescents: a systematic review. Diabetes Care. 2009;32(9):1743-5.

69.Srinivasan S, Ambler GR, Baur LA, Garnett SP, Tepsa M, Yap F, et al. Randomized, controlled trial of metformin for obesity and insulin resistance in children and adolescents: improvement in body composition and fasting insulin. J Clin Endocrinol Metab. 2006;91(6):2074-80.

70.Nogueira-de-Almeida CA, Mello ED, Mello PP, Mello PD, Zorzo RA, Ribas-Filho D. Consenso da Associação Brasileira de Nutrologia sobre manejo da dislipidemia secundária à obesidade infanto-juvenil. Int J Nutrol. 2017;10(04):161-78.

71.Falkner B, Daniels SR. Summary of the Fourth Report on the Diagnosis, Evaluation, and Treatment of High Blood Pressure in Children and Adolescents. Hypertension. 2004;44(4):387-8.

72.Malachias MVB. Apresentação. In: Malachias MVB, Souza WKSB, Plavnik FL, Rodrigues CIS, Brandão AA, Nevez, MFT, et al. 7a Diretriz Brasileira de Hipertensão Arterial. Arq Bras Cardiol. 2016;107: XV-XIX.

73.Brady TM, Redwine KM, Flynn JT, American Society of Pediatric N. Screening blood pressure measurement in children: are we saving lives? Pediatric Nephrol. 2014;29(6):947-50.

74.Costa KCM, Lima JC, Nogueira-de-Almeida CA, Ciampo LAD, Souza CSB. Variation of the brachial artery diameter in obese children: present and future. Rev Paul Pediatr. 2012;30(3):431-7.

75.Caixe SH, Benedeti ACGS, Garcia J, Martins WP, Mauad Filho F, Del Ciampo LA, et al. Evaluation of echocardiography as a marker of cardiovascular risk in obese children and adolescents. Int J Clin Pediatr. 2014;3(3):7.

76.Nogueira-de-Almeida CA, Benedeti ACGS, Garcia J, Caixe SH. Correlation between ultrasonographic measures of the abdominal adiposity and indicators of obesity in normal and overweight/obesity children. The FASEB J. 2016;30(1 Supplement):1165.1164.

77.Nogueira-de-Almeida CA, Caixe SH, Benedeti ACGS, Garcia J. Echocardiography evaluation as a marker of cardiovascular risk on obese children and adolescents. The FASEB J. 2016;30(1 Supplement): 126.121.

78.Nogueira-de-Almeida CA, Garcia J, Caixe SH, Benedeti ACGS. Ultrasonographic assessment of the common carotid intima-media complex in normal weight children and in overweight/obese children. The FASEB J. 2016;30(1 Supplement):1165.1163.

79.Costa KCM, Ciampo LAD, Silva PS, Lima JC, Martins WP, Nogueira-de-Almeida CA. Ultrasonographic markers of cardiovascular disease risk in obese children. Rev Paul Pediatr. 2018;36(2):171-175. doi: 10.1590/1984-0462/;2018;36;2;00016:0.

80.Garcia J, Benedeti ACGS, Caixe SH, Mauad Filho F, Nogueira-de-Almeida CA. Avaliação ultrassonográfica do complexo médio-intimal das carótidas comuns em crianças eutróficas e portadoras de sobrepeso/obesidade. J Vasc Bras. 2019;18.

81.Sociedade Brasileira de Pediatria. Hipertensão arterial na infância e adolescência. 2019. Disponível em: https://www.sbp.com.br/fileadmin/user_upload/21635c-MO_-_Hipertensao_Arterial_Infanc_e_Adolesc.pdf; acessado em: 10 de agosto de 2021.

82.Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A, et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertension. 2016;34(10).

1.Ribas-Filho D, Suen VMM. Tratado de nutrologia. 2.ed. Barueri: Manole; 2018.

2.Word Health Organization – WHO. Obesity-preventing and managing the global epidemic. Geneva: WHO; 1997.

3.Ministério da Saúde. Caderneta de Saúde da Pessoa Idosa. 3.ed. Brasília: Ministério da Saúde; 2014.

4.Sociedade Brasileira de Diabetes. Diretrizes da Sociedade Brasileira de Diabetes 2019-2020. São Paulo, 2019.

5.Siri WE. Body composition from fluids spaces and density: analyses of methods. In: Techniques for measuring body composition. Washington, DC: National Academy of Science and Natural Resource Council; 1961.

 

1.Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR. Nutrição moderna de Shils na saúde e na doença. Obesidade: epidemiologia, etiologia e prevenção. 11.ed. Barueri: Manole; 2016. p.775-89.

2.De Almeida CAN, de Mello ED. Nutrologia pediátrica: prática baseada em evidências. Barueri: Manole; 2016. p.135-6.

3.Ribas D et al. Obesidade: abordagem nutrológica. In: Ribas D, Suen VMM. Tratado de nutrologia. Barueri: Manole; 2013. p.253-4.

4.Francis RC. Epigenética: como a ciência está revolucionando que sabemos sobre hereditariedade. Rio de Janeiro: Zahar; 2015. Capítulo 1 – O efeito avó. p.219-30.

5.Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412-7.

6.Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2:577-80.

7.Phillips DI, Barker DJ, Hales CN, Hirst S, Osmond C. Thiness at birth and insulin resistance in adult life. Diabetologia. 1994;37:150-4.

8.Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to induced fetal growth. Diabetologia. 1994;37:150-4.

9.Oken E, Levitan EB, Gilmann MW. Maternal smoking during pregnancy and child overweight: systematic review and metaanalysis. Int J Obes. 2008;32:201-10.

10.Oken E, Taveras EM, Kleiman KP, Rich-Edwards JW, Gillman MW. Gestational weight gain and child adiposity at age 3 years. Am J Obstet Gynecol. 2007;196:332 el-8.

11.Farooqi IS. Monogenic human obesity. Front Horm Res. 2008;36:1-10.

12.Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. 2003;34(12):1085-95.

13.Kasper DL, et al. Medicina interna de Harrison. 17.ed. Porto Alegre: Artmed; 2008. p.465.

14.Yokum S, Gearhardt AN, Harris JL, Brownell KD. Individual diferences in striatum activity to food commercials predict wight gain in adolescentes. Obesity Society. 2014.

15.Rolls BJ. The relationship between dietary energy density and energy intake. Physiol Behav. 2009; 97:609-15.

16.Harder T, Bergmann R, Kallischnigg G, Plagemann A. Duration of breastfeeding and risk of overweight: a meta-analysis. J Int Assoc Stud Obes. 2003;27:162-72.

17.Horta BL, Loret de Mola C, Victora CG. Long-term consequences os breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: a systematic review and meta-analysis. Acta Pediatr. 2015;104:30-7.

18.Altazan AD, Gilmore LA, Guo J, Rosenberg DM, Toupo D, Gowins A, et al. Unintentional error in formula preparation and its simulated impact on infant weight and adiposity. Pediatr Obes. 2019;e12564.

19.Van Ginneken V, Sitnyakowski L, Jeffery JE. Infect obesity: viral infections (especially with human adenovírus:AD-36) may be a cause of obesity. Med Hyphoteses. 2009;72:383-8.

20.Sekirov I, Russell SL, Antunes LC M, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010; 90(3):859-904. doi:10.1152/physrev.00045.2009.

21.Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012;3(4):279-88.

22.Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022-3.

23.Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 2015;15(1):100.

24.Brondel L, Romer MA, Nouglus PM, Touyarou P, Davenne D. Acut partial sleep deprivation increases food intake in healthy men. AJCN. 2010 Jun;91(6):1550-9.

26.Barbosa-Silva MC, Barros AJ, Wang J, Heymsfield SB, Pierson RN Jr. Bioelectrical impedance analysis: population reference values for phase angle by age and sex. Am J Clin Nutr. 2005;82(1):49-52.

27.Kyle UG, Schutz Y, Dupertuis YM, Pichard C. Body composition interpretation: contributions of the fat-free mass index and the body fat mass index. Nutrition. 2003 Jul/Aug;19(7-8).

 

1.Lee MJ, Wu Y, Fried SK. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Aspects Med. 2013;34:1-11.

2.Tchkonia T, Thomou T, Zhu Y, Karagiannides I, Pothoulakis C, Jensen MD, Kirkland JL. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metabolism. 2013;17: 644-56.

 3.Macotela Y, Emanuelli B, Mori MA, Gesta S, Schulz TJ, Tseng YH, et al. Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes. 2012;61:1691-9.

4.Tchkonia T, Thomou T, Zhu Y, Karagiannides I, Pothoulakis C, Jensen MD, et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metabolism. 2013;17:644-56.

5.Tran TT, Kahn CR. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol. 2010;6:195-213.

6.Bartelt A, Heeren J. The holy grail of metabolic diseases: brown adipose tissue. Curr Opin Lipidol. 2012;23(3):190-5.

7.Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adults humans. N Eng J Med. 2009;360(15):1509-17.

8.Van Marken Lichtenbelt WD, Vanhonmerig JW, Smulders NM, Drossaerts JM, et al. Cold-activated brown adipose tissue in healthy men. N Eng J Med. 2009;360(15):1500-8.

9.Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014;156:20.

10.Ye L. Fat cells directly sense temperature to activate thermogenesis. PNAS. 2013;110(30):12480-5.

11.Seale P, Lazar MA. Brown fat in humans: turning up the heat on obesity. Diabetes. 2009;58:1482.

12.Wu P, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 2013;27:234.

13.Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463-8.

14.Roberts LD, Boström P, O’Sullivan JF, Shinzel RT, Lewis GD, Dejam A, et al. Beta-aminoisobutyric acid induces browning of white fat and hepatic beta-oxidation and is inversely correlated with cardiometabolic risk. Cell Metab. 2014;19:96.

15.Emanuelli B, Vienberg SG, Smyth G, Cheng C, Stanford KI, Arumugam M, et al. Interplay between FGF21 and insulin action in the liver regulates metabolism. J Clin Invest. 2014;124:515.

16.Iglesias P, Selgas R, Romero S, Díez JJ. Biological role, clinical significance, and therapeutic possibilities of the recently discovered metabolic hormone fibroblastic growth factor 21. Eur J Endocrinol. 2012;167:301.

17.Cinti S. The adiposse organ at a glance. Dis Model Mech. 2012;5(5):588-94.

18.Giordano A, Smorlesi A, Frontini A, Barbatelli F, Cinti S. White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur J Endocrinol. 2014:170(5):R159-71.

19.Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87-91.

20.Ruderman NB, Schneider SH, Berchtold P. The “metabolically-obese,” normal-weight individual. Am J Clin Nutr. 1981;34(8):1617-21.

21.Unger RH, Scherer PE. Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol Metab. 2010;21(6):345-52.

22.Arner P. Catecholamine-induced lipolysis in obesity. Int J Obes Relat Metab Disord. 1999;23(Suppl.1): 10-3.

23.Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet. 1996;348:159-161.

1.Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288-98.

2.Lucchese M, Scopinaro N (eds.). Minimally invasive bariatric and metabolic surgery. Cham: Springer International Publishing; 2015.

3.Abumrad NA, Klein S. Update on the pathophysiology of obesity. Curr Opin Clin Nutr Metab Care. 2010;13(4):357-8.

4.Hedley AA, Ogden CL, Johnson CL, Carroll MD, Curtin LR, Flegal KM. Prevalence of overweight and obesity among US children, adolescents, and adults, 1999-2002. JAMA. 2004;291:2847-50.

5.Oussaada SM, van Galen KA, Cooiman MI, Kleinendorst L, Hazebroek EJ, van Haelst MM, et al. The pathogenesis of obesity. Metabolism. 2019;92:26-36.

6.Gadde KM, Martin CK, Berthoud HR, Heymsfield SB. Obesity: pathophysiology and management. J Am Coll Cardiol. 2018;71(1):69-84.

7.Mozaffarian D, Ludwig DS. The 2015 US dietary guidelines: lifting the ban on total dietary fat. JAMA. 2015;313(24):2421-2.

8.Souza RJ, Bray GA, Carey VJ, Hall KD, LeBoff MS, Loria CM, et al. Effects of 4 weight-loss diets differing in fat, protein, and carbohydrate on fat mass, lean mass, visceral adipose tissue, and hepatic fat: results from the POUNDS LOST trial. Am J Clin Nutr. 2012;95(3):614-25.

9.Schwartz MW, Seeley RJ, Zeltser LM, Drewnowski A, Ravussin E, Redman LM, Leibel RL. Obesity pathogenesis: an Endocrine Society scientific statement. Endocr Rev. 2017;38(4):267-96.

10.Hall KD, Guo J. Obesity energetics: body weight regulation and the effects of diet composition. Gastroenterology. 2017;152:1718-27.e3.

11.Fall T, Mendelson M, Speliotes EK. Recent advances in human genetics and epigenetics of adiposity: pathway to precision medicine? Gastroenterology. 2017;152:1695-706.

12.Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197-206.

13.Angulo MA, Butler MG, Cataletto ME. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Invest. 2015;38:1249-63.

14.Barker DJ. Developmental origins of adult health and disease. J Epidemiol Community Health. 2004;58:114-5.13.

15.Cordero P, Li J, Oben JA. Epigenetics of obesity: beyond the genome sequence. Curr Opin Clin Nutr Metab Care. 2015;18:361-6.

16.Karam JG. Secondary causes of obesity. Clin Pract 2007;4(5):641.

17.Block NE, Buse MG. Effects of hypercortisolemia and diabetes on skeletal muscle insulin receptor function in vitro and in vivo. Am J Physiol. 1989;256:E39-48.

18.Bujalska ID, Kumar S, Hewison M, Stewart PM. Differentiation of adipose stromal cells: the roles of glucocorticoids and 11 β-hydroxysteroid dehydrogenase. Endocrinolgy. 1999;140(7):3188-96.

19.Wajchenberg BL, Bosco A, Marone MM, Levin S, Rocha M, Lerário AC, et al. Estimation of body fat and lean tissue distribution by dual energy x-ray absorptiometry and abdominal body fat evaluation by computed tomography in Cushing’s disease. J Clin Endocrinol Metab. 1995;80(9):2791-4.

20.Magiakou MA, Mastorakos G, Oldfield EH, Gomez MT, Doppman JL, Cutler GB, et al. Cushing’s syndrome in children and adolescents. Presentation, diagnosis and therapy. N Engl J Med. 1994;331(10):629-36.

21.Tunbridge WMG, Evered DC, Hall R, Appleton D, Brewis M, Clark F, et al. The spectrum of thyroid disease in the community: the Whickham Survey. Clin Endocrinol. 1977;7:481-93.

22.Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489-99.

23.Krotwiesky M. Thyroid hormones in the pathogenesis and treatment of obesity. Eur J Pharmacol. 2002;440(2-3):85-98.

24.Lo JC, Feigenbaum SL, Yang J, Pressman AR, Selby JV, Go AS. Epidemiology and adverse cardiovascular risk profile of diagnosed polycystic ovary syndrome. J Clin Endocrinol Metab. 2006;91(4):1357-63.

25.Pasquali R, Casimirri F. The impact of obesity on hyperandrogenism and polycystic ovary syndrome in premenopausal women. Clin Endocrinol (Oxf.) 1993;39:1-16.23.

26.Gambineri A, Pelusi C, Vicennati V, Pagotto U, Pasquali R. Obesity and the polycystic ovary syndrome. Int J Obes Relat Metab Disord. 2002;26:883-96.

27.Dietz J, Schwartz J. Growth hormone alters lipolysis and hormone-sensitive lipase activity in 3T3-F442A adipocytes. Metabolism. 1991;40(8):800-6.

28.Rosen T, Bosaeus I, Tolli J, Lindstedt G, Bengtsson BA. Increased body fat mass and decreased extracellular fluid volume in adults with growth hormone deficiency. Clin Endocrinol (Oxf). 1993;38(1):63-71.

29.Pinkney J, Wilding J, Williams G, MacFarlane I. Hypothalamic obesity in humans: what do we know and what can be done? Obes Rev. 2002;3(1):27-34.

30.Daousi C, Dunn AJ, Foy PM, MacFarlane IA, Pinkney JH. Endocrine and neuroanatomic features associated with weight gain and obesity in adult patients with hypothalamic damage. Am J Med. 2005;118(1):45-50.

31.Bhasin S, Woodhouse L, Storer TW. Androgen effects on body composition. Growth Horm. IGF Res. 2003;13(Suppl.):S63-71.

32.Marin P, Lonn L, Andersson B, Odén B, Olbe L, Bengtsson BA, et al. Assimilation of triglycerides in subcutaneous and intraabdominal adipose tissues in vivo in men: effects of testosterone. J Clin Endocrinol Metab. 1996;81:1018-22.

33.Chen RY, Wittert GA, Andrews GR. Relative androgen deficiency in relation to obesity and metabolic status in older men. Diabetes Obes Metab. 2006;8(4):429-35.

34.Kapoor D, Goodwin E, Channer KS, Jones TH. Testosterone replacement therapy improves insulin resistance, glycemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with Type 2 diabetes. Eur J Endocrinol. 2006;154(6):899-906.

35.Marin P, Holmang S, Jonsson L, Sjostrom L, Kvist H, Holm G, et al. The effects of testosterone treatment on body composition and metabolism in middleaged obese men. Int J Obes Relat Metab Disord. 1992;16:991-7.

36.Marin P, Krotkiewski M, Bjorntorp P. Androgen treatment of middle-aged, obese men: effects on metabolism, muscle and adipose tissues. Eur J Med. 1992;1:329-36.

37.Glass AR, Swerdloff RS, Bray GA, Dahms WT, Atkinson RL. Low serum testosterone and sex hormone binding globulin in massively obese men. J Clin Endocrinol Metab. 1977;45:1211.

38.Garaulet M, Pérez-Llamas F, Baraza JC, Garcia-Prieto MD, Fardy PS, Tébar FJ, et al. Body fat distribution in pre- and post-menopausal women: metabolic and anthropometric variables. J Nutr Health Aging. 2002;6(2):123-6.

39.Harrington MG, McGeorge AP, Ballantyne JP, Beastall GA. A prospective survey for insulinomas in a neurology department. Lancet. 1983;1(8333):1094-5.

40.Kaartinen JM, Kaar ML, Ohisalo JJ. Defective stimulation of adipocyte adenylate cyclase, blunted lipolysis and obesity in pseudohypoparathyroidism 1a. Pediatr Res. 1994;35(5):594-7.45.

41.Carel JC, Le Stunff C, Condamine L, Mallet E, Chaussian JL, Adnot P, et al. Resistance to the lipolytic action of epinephrine: a new feature of protein Gs deficiency. J Clin Endocrinol Metab. 1999;84(11):4127-31.46.

42.Wang HY, Watkins DC, Malbon CC. Antisense oligodeoxynucleotides to GS protein α-subunit sequence accelerate differentiation of fibroblasts to adipocytes. Nature. 1992;358(6384):334-7.47.

43.Ong KK, Amin R, Dunger DB. Pseudohypoparathyroidism – another monogenic obesity syndrome. Clin Endocrinol (Oxf.) 2000;52(3):389-91.

44.Bonaglia MC, Ciccone R, Gimelli G, Gimelli S, Marelli S, Verheij J, et al. Detailed phenotype-genotype study in five patients with chromosome 6q16 deletion: narrowing the critical region for Prader-Willi-like phenotype. Eur J Hum Genet. 2008;16(12):1443-9.

45.Crinò A, Schiaffini R, Ciampalini P, Spera S, Beccaria L, Benzi F, et al; Genetic Obesity Study Group of Italian Society of Pediatric endocrinology and diabetology (SIEDP). Hypogonadism and pubertal development in Prader-Willi syndrome. Eur J Pediatr. 2003;162(5):327-33.

46.Janssen S, Ramaswami G, Davis EE, Hurd T, Airik R, Kasanuki JM, et al. Mutation analysis in Bardet-Biedl syndrome by DNA pooling and massively parallel resequencing in 105 individuals. Hum Genet. 2011;129(1):79-90.

47.Dardeno TA, Chou SH, Moon HS, Chamberland JP, Fiorenza CG, Mantzoros CS. Leptin in human physiology and therapeutics. Front Neuroendocrinol. 2010;31(3):377-93.

48.Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med. 1999;341(12):879-84.

49.Chan JL, Mantzoros CS. Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet. 2005;366(9479):74-85.

50.Trasande L, Cronk C, Durkin M, Weiss M, Schoeller DA, Gall EA, et al. Environment and obesity in the National Children’s Study. Environ Health Perspect. 2009;117(2):159-66.

51.Lubrano-Berthelier C, Le Stunff C, Bougnères P, Vaisse C. A homozygous null mutation delineates the role of the melanocortin-4 receptor in humans. J Clin Endocrinol Metab. 2004;89(5):2028-32.

52.Savastano DM, Tanofsky-Kraff M, Han JC, Ning C, Sorg RA, Roza CA, et al. Energy intake and energy expenditure among children with polymorphisms of the melanocortin-3 receptor. Am J Clin Nutr. 2009;90(4):912-20.

53.Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. 2008;40(6):768-75.

54.Krude H, Biebermann H, Luck W, Horn R, Brabant G, Grüters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19(2):155-7.

55.Krude H, Biebermann H, Schnabel D, Tansek MZ, Theunissen P, Mullis PE, et al. Obesity due to proopiomelanocortin deficiency: three new cases and treatment trials with thyroid hormone and ACTH4-10. J Clin Endocrinol Metab. 2003;88(10):4633-40.

56.Tsai AG, Wadden TA. In the clinic: obesity. Ann Intern Med. 2013;159(5):ITC3-1-ITC3-15; quiz ITC3-16.

57.Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141(11):846-50.

58.Filozof C, Fernández Pinilla MC, Fernández-Cruz A. Smoking cessation and weight gain. Obes Rev. 2004;5(2):95-103.

59.Lam YY, Ravussin E. Indirect calorimetry: an indispensable tool to understand and predict obesity. Eur J Clin Nutr. 2017;71(3):318-22.

60.Franz MJ, VanWormer JJ, Crain AL, Boucher JL, Histon T, Caplan W, et al. Weight-loss outcomes: a systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J Am Diet Assoc. 2007;107:1755-67.

61.Gurevich-Panigrahi T, Panigrahi S, Wiechec E, Los M. Obesity: pathophysiology and clinical management. Curr Med Chem. 2009;16(4):506-21.

62.Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86(12):5992.

63.Brobeck JR. Mechanism of the development of obesity in animals with hypothalamic lesions. Physiol Rev. 1946;26:541-59.15.

64.Sternson SM, Eiselt AK. Three pillars for the neural control of appetite. Annu Rev Physiol. 2017;79:401-23.

65.Berthoud HR, Munzberg H. The lateral hypothalamus as integrator of metabolic and environmental needs: from electrical self-stimulation to opto-genetics. Physiol Behav. 2011;104:29-39

66.Berthoud HR, Munzberg H, Morrison CD. Blaming the brain for obesity: Integration of hedonic and homeostatic mechanisms. Gastroenterology. 2017;152:1728-38.

67.Carnell S, Gibson C, Benson L, Ochner CN, Geliebter A. Neuroimaging and obesity: current knowledge and future directions. Obes Rev. 2012;13:43-56.

68.Scholtz S, Miras AD, Chhina N, Prechti CG, Sleeth ML, Daud NM, et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2014;63:891-902.

69.Hollmann M, Hellrung L, Pleger B, Schlögl H, Kabisch S, Stumvoll M, et al. Neural correlates of the volitional regulation of the desire for food. Int J Obes (Lond). 2012;36:648-55.

70.Goldman RL, Canterberry M, Borckardt JJ, Madan A, Byrne TK, George MS, et al. Executive control circuitry differentiates degree of success in weight loss following gastric-bypass surgery. Obesity (Silver Spring). 2013;21:2189-96.

71.Wijngaarden MA, Veer IM, Rombouts SA, van Buchem MA, van Djik KW, Pijl H, et al. Obesity is marked by distinct functional connectivity in brain networks involved in food reward and salience. Behav Brain Res. 2015;287:127-34.

72.Berthoud HR, Munzberg H, Richards BK, Morrison CD. Neural and metabolic regulation of macronutrient intake and selection. Proc Nutr Soc. 2012;71:390-400.

73.Elagizi A, Kachur S, Lavie CJ, Carbone S, Pandey A, Ortega F, Milani RV. An overview and update on obesity and the obesity paradox in cardiovascular diseases. Prog Cardiovasc Dis. 2018;61(2):142-50.

74.Hjorth MF, Blædel T, Bendtsen LQ, Lorenzen JK, Holm JB, Kiilerich P, et al. Prevotella-to-Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis. Int J Obes (Lond). 2019;43(1):149-57.

75.Mathur R, Barlow GM. Obesity and the microbiome. Expert Rev Gastroenterol Hepatol. 2015;9(8): 1087-99.

76.Lean ME. Pathophysiology of obesity. Proc Nutr Soc. 2000;59(3):331-6.

77.Manson JE, Colditz GA, Meir J, Stampfer MJ, Willett WC, Rosner B, et al. A prospective study of obesity and risk of coronary heart disease in women. N Eng J Med. 1990;322:882-9.

 

1.Diretrizes Brasileiras de Obesidade 2016. Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica. 4a ed. São Paulo: AC Farmacêutica; 2016.

2.Mahan LK, Escott-Stump S, Raymond JL. Krause: alimentos, nutrição e dietoterapia. 13a ed. Rio de Janeiro: Elsevier; 2013.

3.Ribas Filho D, Suen VMM. Tratado de nutrologia. 2a ed. Barueri: Manole; 2018.

4.Douketis JD, Macie C, Thabane L, Williamson DF. Systematic review of long-term weight loss studies in obese adults: clinical significance and applicability to clinical practice. Int J Obes. 2005;29(10):1153.

5.Perreault L. Obesity in adults: dietary therapy. UptoDate 2020. Disponível em: https://www.uptodate.com/contents/obesity-in-adults-dietary-therapy; acessado em: 15 agosto de 2021.

6.Roberts SB, Rosenberg I. Nutrition and aging: changes in the regulation of energy metabolism with aging. Physiol Rev. 2006;86:651.

7.Rosenbaum M, Hirsch J, Gallagher DA, Leibel RL. Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr. 2008;88:906.

 

1.Matarese LE, Pories WJ. Adult weight loss diets: metabolic effects and outcomes. Nutr Clin Pract. 2014;29(6):759-67.

2.Scheen AJ. The future of obesity: New drugs versus lifestyle interventions. Expert Opin Investig Drugs. 2008;17:263-7.

3.Noakes TD, Windt J. Evidence that supports the prescription of low-carbohydrate high-fat diets: a narrative review. Br J Sports Med. 2017;51:133-9.

4.Ebbeling CB, Swain JF, Feldman HA, Wong WW, Hachey DL, Garcia-Lago E, et al. Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA. 2012;307:2627-34.

5.Anton SD, Hida A, Heekin K, Sowalsky K, Karabetian C, Mutchie H, et al. Effects of popular diets without specific calorie targets on weight loss outcomes: Systematic review of findings from clinical trials. Nutrients. 2017;9(8):822.

6.Johnston BC, Kanters S, Bandayrel K, Wu P, Naji F, Siemieniuk RA, et al. Comparison of weight loss among named diet programs in overweight and obese adults: a meta-analysis. JAMA. 2019;312(9):923-33.

7.Martinez JA, Navas-Carretero S, Saris WHM, Astrup A. Personalized weight loss strategies: the role of macronutrient distribution. Nat Rev Endocrinol. 2014;10(12):749.

8.Ge Long, Sadeghirad B, Ball GDC, Costa BR, Hitchcock CL, Svendrovski A, et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: systematic review and network meta-analysis of randomised trials. BMJ; 2020;369.

9.Essah PA, Levy JR, Sistrun S, Kelly SM. Effect of weight loss by a low-fat diet and a low-carbohydrate diet on peptide YY levels. Int J Obes (Lond). 2020;34(8):1239-42.

10.Setian N. Efeitos anoréticos do PYY na obesidade. Rev Assoc Med Bras. 2004 Sep;50(3):236.

11.Summer SS, Brehm BJ, Benoit SC, D’Alessio DA. Adiponectin changes in relation to the macronutrient composition of a weight loss diet. Obesity. 2011;19(11):2198-204.

12.Calton JB. Prevalence of micronutrient deficiency in popular diet plans. J Int Soc Sports Nutr. 2010;7(1):24.

13.Varady KA. Intermittent versus daily calorie restriction: which diet regimen is more effective for weight loss?. Obes Rev. 2011;12(7):e593-e601.

14.Truby H, Haines TP. Comparative weight loss with popular diets. BMJ. 2020.

15.Bazzano LA, Hu T, Reynolds K, Bunol C, Liu Y, Chen C-S, et al. Effects of low-carbohydrate and low-fat diets: a randomized trial. Ann Intern Med. 2014;161(5):309-18.

 

1.Blair SN. Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med. 2009;43:1-2.

2.Booth FW, Chakravarthy MV, Spangenburg EE. Exercise and gene expression: physiological regulation of the human genome through physical activity. J Physiol. 2002;543:399-411.

3.Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126-31.

4.Friedrich MJ. Global obesity epidemic worsening. JAMA. 2017;318(7):603.

5.García-Hermoso A, Ceballos-Ceballos RJ, Poblete-Aro CE, Hackney AC, Mota J, Ramírez-Vélez R. Exercise, adipokines and pediatric obesity: a meta-analysis of randomized controlled trials. Int J Obes (Lond). 2017;41:475-82.

6.Kelly DE. Skeletal muscle fat oxidation: timing and flexibility are everything. J Clin Invest. 2005;115:1699-702.

7.Kraus WE, Bittner V, Appel L, Blair SN, Church T, Després JP, et al.; American Heart Association Physical Activity Committee of the Council on Lifestyle and Metabolic Health, Council on Clinical Cardiology, Council on Hypertension, and Council on Cardiovascular and Stroke Nursing. The National Physical Activity Plan: a call to action from the American Heart Association: a science advisory from the American Heart Association. Circulation. 2015;131(21):1932-40.

8.Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8:457-65.

9.Tchernof A, Després J-P. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93:359-404.

 

1.World Health Organization (WHO). Obesity: preventing and managing the global epidemic. Geneva: WHO; 2000.

2.Instituto Brasileiro de Geografia e Estatística (IBGE). Pesquisa de orçamentos familiares 2008-2009: análise do consumo alimentar pessoal no Brasil. Rio de Janeiro: IBGE; 2011.

3.Nogueira-de-Almeida CA, de Mell ED, de Almeida Ribeiro GAN, de Almeida CCJN, Falcão MC. Classificação da obesidade infantil. Medicina (Ribeirão Preto Online). 2018;51:138-52.

4.Kaufman A. Alimento e emoção. ComCiência. 2013;145.

5.Bion W. Learning from experience. London: Jason Aronson; 1994.

6.Bion W. Transformações: do aprendizado ao crescimento. 2a ed. Rio de Janeiro: Imago; 2004.

7.Almeida CCJN. Psicologia da alimentação. In: Nogueira-de-Almeida CA, Mello E (eds.). Nutrologia pediátrica: prática baseada em evidências. Barueri: Manole; 2016. p.100-16.

8.Almeida CCJN, Nogueira De Almeida CA. Acompanhamento psicológico da criança obesa. In: Weffort VRS, Lamounier JA (eds.). Nutrição em pediatria: da neonatologia à adolescência. Barueri: Manole; 2017. p.581-97.

9.Kirch JR. Obesidade, causas e o tratamento à luz da psicanálise. Ijuí: Universidade Regional do Noroeste do Estado do Rio Grande do Sul; 2017.

10.Cremasco MVF, Ribeiro CC. Quando a cirurgia falha: implicações da melancolia na cirurgia da obesidade. Psicol Cienc Prof. 2017;37:258-72.

11.Farah JFS, Castanho P. Dimensões psíquicas do emagrecimento: por uma compreensão psicanalítica da compulsão alimentar. Rev Latinoam Psicopatol Fundam. 2018;21:41-57.

1.Vigarello G. As metamorfoses do gordo. Petrópolis: Vozes; 2012.

2.Bonder N. A dieta do rabino: a cabala da comida. Rio de Janeiro: Imago; 1989.

3.Kaufman A. Transtornos alimentares: a comida e a moda estimulando o problema. In: Ramadam ZBA, Assumpção Jr FB (eds.). Psiquiatria: da magia à evidência? Barueri: Manole; 2005. p.331-57.

4.Kaufman A. Imagem corporal e obesidade. In: Kaufman A (ed.). O obeso no prato. São Paulo: Segmento Farma; 2005. p.25-31.

5.Lowen A. O corpo traído. São Paulo: Summus; 1979.

6.Kaufman A. Obesidade feminina e sexualidade. In: Cordás TA (org.). Fome de cão. São Paulo: Maltese; 1993. p.83-93.

7.Kaufman A. Alimento e emoção. Rev ABESO. 2012;7-11.

8.Rolls BJ, Fedoroff IC, Guthrie JF. Gender differences in eating behavior and body weight regulation. Health Psychol. 1991;10(2):133-42.

9.Alperovich BJ. Génesis y perpetuación de la obesidad o ‘¡Comé y quedáte quieto!’. Rev Psicoanal (Arg). 1988;45(5):1027-36.

10.Bruch H. Eating disorders: obesity, anorexia nervosa, and the person within. New York: Basic Books; 1973.

11.Kaufman A. Aspectos psicodinâmicos da obesidade. In: Fráguas Jr. R, Meleiro AMAS, Marchetti RL, Henriques Jr. SG (orgs.). Psiquiatria e psicologia no hospital geral: integrando especialidades. São Paulo: Lemos; 1997. p.101-11.

12.Liberman M. Obesidade e mitos: o feminino posto em questão. Junguiana. 1994;12:34-47.

13.Kaufman A. Aspectos motivacionais para o emagrecimento: proposta de diário alimentar. Rev ABESO. 2013;62:14-8.

14.Kaufman A. Grupos e equipe multiprofissional no tratamento do obeso. In: Kaufman A (ed.). O obeso no prato. São Paulo: Segmento Farma; 2005. p.19-23.

15.Herpertz S. Obesity is more than an eating disorder: the multidimensional perspective of a pandemia. Z Psychosom Med Psychother. 2008;54(1):4-31.

16.Lillis J, Hayes SC, Bunting K, Masuda A. Teaching acceptance and mindfulness to improve the lives of the obese: a preliminary test of a theoretical model. Ann Behav Med. 2009;37(1):58-69.

17.Renjilian DA, Perri MG, Nezu AM, McKelvey WF, Shermer RL, Anton SD. Individual versus group therapy for obesity: effects of matching participants to their treatment preferences. J Consult Clin Psychol. 2001;9(4):717-21.

18.Kaufman A. Group psychotherapy for morbidly obese subjects: reality show experiment. Br J Psychodrama Sociodrama. 2009;24(1):21-44.

19.Kaufman A, Tavares H, Durante CR. Aspectos impulsivos da obesidade. In: Tavares H, Abreu CN, Seger L, Mariani MMC, Filomensky TZ (eds.). Psiquiatria, saúde mental e a clínica da impulsividade. Barueri: Manole; 2015. p.278-94.

20.Johnson BA, Ait-Daoud N, Bowden CL, DiClemente CC, Roache JD, Lawson K, et al. Oral topiramate for treatment of alcohol dependence: a randomised controlled trial. Lancet. 2003;361(9370):1677-85.

21.Pucci A, Finer N. New medications for treatment of obesity: metabolic and cardiovascular effects. Can J Cardiol. 2015;31(2):142-52.

22.van Bloemendaal L, Ten Kulve JS, Fleur SE, Ijzerman RG, Diamant M. Effects of glucagon-like peptide 1 on appetite and body weight: focus on the CNS. J Endocrinol. 2014;221(1):T1-16.

 

1.Departamento de Nutrologia. Obesidade na infância e adolescência: manual de orientação – Sociedade Brasileira de Pediatria. Departamento Científico de Nutrologia. 3a ed. São Paulo: SBP; 2019.

2.Skelton JA, Irby MB, Grzywacz JG, Miller G. Etiologies of obesity in children: nature and nurture. Pediatr Clin North Am. 2011;58:1333-54.

3.Almeida CAN. Tratamento da obesidade na infância e adolescência. Rev Med Minas Gerais. 2011; 21(3Supl.1):S1-S144.

4.Hopkins KF, Decristofaro C, Elliott L. How can primary care providers manage pediatric obesity in the real world? J Am Acad Nurse Pract. 2011 Jun;23(6):278-88.

5.Luttikhuis S. Interventions for treating obesity in children. Cochrane Database Syst Rev. 2010.

6.Abeso. Diretrizes brasileiras de obesidade 2016. 4a ed. São Paulo.

7.Almeida CAN, Mello ED. Nutrologia pediátrica: prática baseada em evidências. Barueri: Manole; 2016.

8.Calarge CA, Mills JA, Janz KF, Burns TL, Coryell WH, Zemel BS. Body composition in adolescents during treatment with selective serotonin reuptake inhibitors. Pediatrics. 2017 Jul;140(1): e20163943.

9.Franco RR, Cominato L, Damiani D. O efeito da sibutramina na perda de peso de adolescentes obesos. Arq Bras Endocrinol Metab [online]. 2014;58(3):243-50.

10.Mancini MC, Geloneze B, Salles JEN, Lima JG, Carra MK. Tratado de obesidade. 2a ed. Rio de Janeiro: Guanabara Koogan; 2015.

11.Sherafat-Kazemzadeh R, Yanovski SZ, Yanovski JA. Pharmacotherapy for childhood obesity: present and future prospects. Int J Obes (Lond). 2013 Jan;37(1):1-15. doi:10.1038/ijo.2012.144.

12.Orskov C, Wettergren A, Holst JJ. Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. Scand J Gastroenterol. 1996;31:665-70.

13.Flint A, Raben A, Ersboll AK, Holst JJ, Astrup A. The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int J Obes Relat Metab Disord. 2001;25:781-92.

14.Ribas Filho D, Suen VMM. Tratado de nutrologia. 2a ed. Barueri: Manole; 2018.

15.Astrup A, Carraro R, Finer N, Harper A, Kunesova M, Lean MEJ, et al. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int J Obes. 2012; 36(6):843.

16.Didek D. Efeitos da administração de liraglutida em ratos obesos sedentários e exercitados [dissertação]. Ponta Grossa: Universidade Estadual de Ponta Grossa; 2018.

17.Hermansen K, Baekdal TA, Düring M, Pietraszek A, Mortensen LS, Jorgensen H, et al. Liraglutide suppresses postprandial triglyceride and apolipoprotein B48 elevations after a fat-rich meal in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, cross-over trial. Diabetes Obes Metab. 2013;15(11):1040-8.

18.Departamento de Nutrologia. Obesidade na infância e adolescência: manual de Orientação – Sociedade Brasileira de Pediatria. Departamento Científico de Nutrologia. 2a ed. São Paulo: SBP; 2012.

19.Wood P. Insulin resistance: a vicious circle of excess fat. Diabetes Control. 2007;351.

20.Expert Panel on Integrated Guidelines for Cardiovascular H, Risk Reduction in C, Adolescents; National Heart Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(Suppl.5): S213-56.

21.Luong DQ, Oster R, Ashraf AP. Metformin treatment improves weight and dyslipidemia in children with metabolic syndrome. JPEM. 2015;28(5-6):649-55.

22.Lughetti L, Predieri B, Bruzzi P, Balli F. Approaches to dyslipidemia treatment in children and adolescents. Expert Rev Endocrinol Metab. 2008;3(5):615-33.

23.Holland AJ, Treasure J, Coskeran P, Dallow J. Characteristics of the eating disorder in Prader-Willi syndrome: implications for treatment. J Intellect Disabil Res. 1995;39:373-81.

24.Kuo JY, Dichtchekenian V, Manna TD, Kuperman H, Damiani D, Setian N. Síndrome de Prader-Willi: aspectos metabólicos associados ao tratamento com hormônio de crescimento. Arq Bras Endocrinol Metab. 2007;51(1):92-8.

25.Stafler P, Wallis C. Prader-Willi syndrome: who can have growth hormone? Arch Dis Child. 2008;93(4):341-5.

 

1.Mancini MC, Geloneze B, Salles JEN, Lima JG, Carra MK. Tratado de obesidade. Rio de Janeiro: Guanabara Koogan; 2015.

2.Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica – Abeso. Diretrizes brasileiras de obesidade. 4a ed. São Paulo.

3.Bouchard C, Bray G. Handbook of obesity: clinical applications. 3a ed. New York: Marcel Dekker; 2008.

4.Li Z, Maglione M, Tu W, Mojica W, Arterburn D, Shugarman LR, et al. Meta-analysis: pharmacologic treatment of obesity. Ann Intern Med. 2005;142:532-46.

5.Wirth A, Krause J. Long-term weight loss with sibutramine. JAMA. 2001;286(11):1331-9.

6.Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults. Circulation. 2013. doi:10.1161/01.

7.Wadden TA, Hollander P, Klein S, Niswender K, Woo V, Hale PM, et al. Weight maintenance and additional weight loss with liraglutide after low calorie diet: the Scale maintenance randomized study. J Obes. 2013;37(11):1443-51.

8.Galvão-Teles A, Freitas P. Tratamento não cirúrgico da obesidade do adulto: recomendações da Sociedade Portuguesa para o estudo da obesidade. 2018.

9.Ribas Filho D, Suen VMM. Tratado de nutrologia. 2a ed. Barueri: Manole; 2018.

1.Organização Mundial da Saúde – OMS. Disponível em: https://www.sbcbm.org.br/endoscopia-e-obesidade/; acessado em: 16 de abril de 2020.

2.Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica – Abeso. Diretrizes brasileiras de obesidade. 4a ed. São Paulo.

3.Howland RH. Off-label medication use. J Psychosoc Nurs Ment Health Serv. 2012 Sep;50(9):11-3. doi:10.3928/02793695-20120807-05. Epub 2012 Aug 17.

4.Hendricks EJ. Off-label drugs for weight management. Diabetes Metab Syndr Obes. 2017 Jun 10;10:223-34. doi:10.2147/DMSO.S95299. eCollection 2017.

5.McEvoy GK (ed.). AHFS drug information. Bethesda: American Society of Health-System Pharmacists; 2015.

6.Lentferink YE, van der Aa MP, van Mill EGAH, Knibbe CAJ, van der Vorst MMJ. Long-term metformin treatment in adolescents with obesity and insulin resistance, results of an open label extension study. Nutr Diabetes. 2018 Sep 10;8(1):47. doi:10.1038/s41387-018-0057-6.

7.Appolinario JC, Fontenelle LF, Papelbaum M, Bueno JR, Coutinho W. Topiramate use in obese patients with binge eating disorder: an open study. Can J Psychiatry. 2002;47:271-3.

8.Anderson JW, Greenway FL, Fujioka K, Gadde KM, McKenney J, O’Neil PM. Bupropion SR enhances weight loss: a 48-week double-blind, placebo-controlled trial. Obes Res. 2002;10:633-41.

9.Heinen J. Sobre o fornecimento de medicamentos off-label. Revista Virtual ESAPERGS, Doutrina. 2011 Apr 1;27-40.

10.Serralde-Zúñiga AE, Gonzalez Garay AG, Rodríguez-Carmona Y, Melendez G. Fluoxetine for adults who are overweight or obese. Cochrane Database Syst Rev. 2019 Oct 15;10:CD011688. doi:10.1002/14651858.CD011688.pub2.

11.Gadde KM, Kopping MF, Wagner HR, 2nd, Yonish GM, Allison DB, Bray GA. Zonisamide for weight reduction in obese adults: a 1-year randomized controlled trial. Arch Intern Med. 2012;172:1557-64.

12.Hollander P, Maggs DG, Ruggles JA, Fineman M, Shen L, Kolterman OG, et al. Effect of pramlintide on weight in overweight and obese insulin-treated type 2 diabetes patients. Obes Res. 2004;12:661-8.

13.Halpern B, Mancini MC, Bueno C, Barcelos IP, de Melo ME, Lima MS, et al. Melatonin increases brown adipose tissue volume and activity in patients with melatonin deficiency: a proof-of-concept study. Diabetes. 2019 May;68(5):947-52. doi:10.2337/db18-0956. Epub 2019 Feb 14.

14.Isaacs D, Yager S, Parker M, Wolfe L, Luxenburg J, Lekic S. Adjunct antihyperglycemic agents in overweight and obese adults with type 1 diabetes. Ann Pharmacother. 2019 Apr;53(4):371-84. doi:10.1177/1060028018816728. Epub 2018 Nov 30.

15.El-Arabey AA. Update on off label use of metformin for obesity. Prim Care Diabetes. 2018 Jun;12(3):284-5. doi:10.1016/j.pcd.2018.02.004. Epub 2018 Mar 7.

16.Ribas Filho D, Suen VMM. Tratado de nutrologia. 2a ed. Barueri: Manole; 2018.

 

1.Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity among adults and youth: United States, 2015-2016. NCHS Data Brief. 2017;(288):1-8.

2.World Obesity Federation. Disponível em: https://www.worldobesity.org/about/about-obesity/prevalence-of-obesity; acessado em: 1o de abril de 2020.

3.World Health Organization. Obesity. WHO; 2014. Disponível em: https://www.who.int/topics/obesity/en; accessado em: 1o de abril de 2020.

4.Organisation for Economic Cooperation and Development. The heavy burden of obesity: the economics of prevention. OECD Health Policy Studies. Paris: OECD Publishing; 2019. Disponível em: https://doi.org/10.1787/67450d67-en; acessado em: 11 de agosto de 2021.

5.Ministério da Saúde. Vigitel Brasil 2016 [Internet]. Brasília: Ministério da Saúde; 2016. Disponível em: https://portalarquivos.saude.gov.br/images/pdf/2017/abril/17/Vigitel.pdf; acessado em: 10 de agosto de 2021.

6.Ministério da Saúde. Vigitel 2018 [Internet]. Brasília: Ministério da Saúde; 2018. Disponível em: https://www.saude.gov.br/noticias/agencia-saude/46191-ministerio-da-saude-quer-conhecer-o-perfil-da-saude-dos-brasileiros; acessado em 1o de abril de 2020.

7.Ribas-Filho D, Suen VMM. Tratado de nutrologia. 2.ed. Barueri: Manole; 2018.

8.Gadde KM, Martin CK, Berthoud HR, Heymsfield SB. Obesity: pathophysiology and management. J Am Coll Cardiol. 2018;71(1):69-84.

9.Hamdy O, Porramatikul S, Al-Ozairi E. Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev. 2006;2:367-73.

10.Karelis AD, St-Pierre DH, Conus F, Rabasa-Lhoret R, Poehlman ET. Metabolic and body composition factors in sub-groups of obesity: what do we know? J Clin Endocrinol Metab. 2004;89:2569-75.

11.Choi KM. Sarcopenia and sarcopenic obesity. Korean J Intern Med. 2016;31:1054-60.

12.Polyzos SA, Margloris, AN. Sarcopenic obesity. Hormones (Athens) 2018;17(3):321-31.

13.Hunter GR, Singh H, Carter SJ, Bryan DR, Fisher G. Sarcopenia, and its implications for metabolic health. J Obes. 2019;2019.

14.Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997;127:990S-1S

15.Dufour AB, Hannan MT, Murabito JM, Kiel DP, Mclean RR. Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: the Framingham study. J Gerontol A Biol Sci Med Sci. 2013;68(2):168-74.

16.Lee J, Hong YP, Shin HJ, Lee W. Associations of sarcopenia and sarcopenic obesity with metabolic syndrome considering both muscle mass and muscle strength. J Prev Med Public Health. 2016; 49:35-44.

17.Agência Nacional de Saúde. Manual de diretrizes para o enfrentamento da obesidade na saúde suplementar brasileira. Rio de Janeiro: ANS; 2017.

18.Sudlow A, le Roux CW, Pournaras DJ. The metabolic benefits of different bariatric operations: what procedure to choose?. Endocr Connect. 2020;9(2):R28-35.

19.Schroeder R, Garrison JM Jr, Johnson MS. Treatment of adult obesity with bariatric surgery. Am Fam Physician. 2011;84(7):805-14.

20.Bray G, Bouchard C. Handbook of obesity. 4.ed. Boca Raton: CRC Press; 2010.

21.Misra A, Chowbey P, Makkar BM, Vikram NK, Wasir JS, Chadha D, et al. Consensus statement for diagnosis of obesity, abdominal obesity and the metabolic syndrome for asian indians and recommendations for physical activity, medical and surgical management. J Assoc Physicians India. 2009;57:163-70.

22.Eisenberg D, Duffy AJ, Bell RL. Does preoperative weight change predict postoperative weight loss after laparoscopic Roux-en-Y gastric bypass in the short term? J Obes. 2010;2010:pii:90707.

23.Rohde L. Rotinas em cirurgia digestiva. 3.ed. Porto Alegre: Artmed; 2018.

24.Zilberstein B, Santo MA, Carvalho MH. Análise crítica de tratamento cirúrgico da obesidade mórbida. ABCD Arq Bras Cir Dig. 2019;329(3):e1450.

25.Stocker DJ. Management of the bariatric surgery patient. Endocrinol Metab Clin North Am. 2003;32:437-57.

26.Faintuch J, Matsuda M, Cruz MELF, Silva MM, Teivelis MP, Garrido AB, et al. Severe protein-calorie malnutrition after bariatric procedures. Obes Surg. 2004;14:175-81.

27.Skroubis G, Sakellaropoulos G, Pouggouras K, Mead N, Nikiforidis G, Kalfarentzos F. Comparison of nutritional deficiencies after Roux-en-Y gastric bypass and after biliopancreatic diversion with Roux-en-Y gastric bypass. Obes Surg. 2002;12:551-8.

28.Elmadfa I, Majchrzak D, Rust P, Genser D. The thiamine status of adult humans depends on carbohydrate intake. Int J Vitam Nutr Res. 2001;71:217-21.

29.Milius G, Rose S, Owen DR, Schenken JR. Probable acute thiamine deficiency secondary to gastric partition for morbid obesity. Nebr Med J. 1982;67:147-50.

30.Singh S, Kumar A. Wernicke encephalopathy after obesity surgery: a systematic review. Neurology. 2007;68:807-11.

31.Kazemi A, Frazier T, Cave M. Micronutrient-related neurologic complications following bariatric surgery. Curr Gastroenterol Rep. 2010;12:288-95.

32.Johnson JM, Maher JW, Demaria EJ, Downs RW, Wolfe LG, Kellum JM. The long-term effects of gastric bypass on vitamin d metabolism. Ann Surg. 2006;243:701-4; discussion 4-5.

33.Chakhtoura MT, Nakhoul NN, Shawwa K, Mantzoros C, El Hajj Fuleihan GA. Hypovitaminosis D in bariatric surgery: a systematic review of observational studies. Metabolism. 2016;65:574-85.

34.De Prisco C, Levine SN. Metabolic bone disease after gastric bypass surgery for obesity. Am J Med Sci. 2005;329:57-61.

35.Zempleni J, Wijeratne SSK, Hassan YI. Biotin. Biofactors. 2009;35:36-46.

36.Yagan FCC, Olcum GG, Kurtulus D, Tugtekin HB. The relationship between obesity and serum vitamin B12, folic acid, vitamin d concentrations in obes adults: a retrospective study. Endocr Abstr. 2016;41:EP183.

37.Baltaci D, Kutlucan A, Turker Y, Yilmaz A, Karacam S, Deler H, et al. Association of vitamin B12 with obesity, overweight, insulin resistance and metabolic syndrome, and body fat composition; primary care-based study. Med Glas (Zenica). 2013;10:203-10.

38.O’Leary F, Samman S. Vitamin B12 in health and disease. Nutrients. 2010;2:299-316.

39.Wallström P, Wirfält E, Lahmann PH, Gullberg B, Janzon L, Berglund G. Serum concentrations of β-carotene and α-tocopherol are associated with diet, smoking, and general and central adiposity. Am J Clin Nutr. 2001;73:777-85.

40.Stryker WS, Kaplan LA, Stein EA, Stampfer MJ, Sober A, Willett WC. The relation of diet, cigarette smoking, and alcohol consumption to plasma beta-carotene and alpha-tocopherol levels. Am J Epidemiol. 1988;127(2):283-96.

41.Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol. 2008;8:685-98.

42.Villarroya F, Giralt M, Iglesias R. Retinoids and adipose tissues: metabolism, cell differentiation and gene expression. Int J Obes. 1999;23:1-6.

43.Kushner RF. Micronutrient deficiencies and bariatric surgery. Curr Opin Endocrinol Diabetes. 2006;13:405-11.

44.Topart P. Iron deficiency and anemia after bariatric surgery. Surg Obes Relat Dis. 2008;4:719-20.

45.Sonnweber T, Ress C, Nairz M, Theuri I, Schroll A, Murphy AT, et al. High-fat diet causes iron deficiency via hepcidin-independent reduction of duodenal iron absorption. J Nutr Biochem. 2012;23:1600-8.

46.Prasad AS. Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr. 2013;4:176-90.

47.Billeter AT, Probst P, Fischer L, Senft J, Kenngott HG, Schulte T, et al. Risk of malnutrition, trace metal, and vitamin deficiency post Roux-en-Y gastric bypass: a prospective study of 20 patients with BMI < 35 kg/m2. Obes Surg. 2015;25:2125-34.

48.Sallé A, Demarsy D, Poirier AL, Lelièvre B, Topart P, Guilloteau G, et al. Zinc deficiency: a frequent and underestimated complication after bariatric surgery. Obes Surg. 2010;20:1660-70.

49.Balsa JA, Botella-Carretero JI, Gómez-Martín JM, Peromingo R, Arrieta F, Sntiuste C, et al. Copper and zinc serum levels after derivative bariatric surgery: differences between Roux-en-Y gastric bypass and biliopancreatic diversion. Obes Surg. 2011;21:744-50.

50.Saif T, Strain GW, Dakin G, Gagner M, Costa R, Pomp A. Evaluation of nutrient status after laparoscopic sleeve gastrectomy 1, 3, and 5 years after surgery. Surg Obes Relat Dis. 2012;8:542-7.

51.Gletsu-Miller N, Broderius M, Frediani JK, Zhao VM, Griffith DP, Darvis Jr SS, et al. Incidence and prevalence of copper deficiency following Roux-en-Y gastric bypass surgery. Int J Obes (Lond). 2012; 36:328-35.

52.Kumar N, Gross JB, Ahlskog JE. Copper deficiency myelopathy produces a clinical picture like subacute combined degeneration. Neurology. 2004;63:33-9.

53.Lazarchick J. Update on anemia and neutropenia in copper deficiency. Curr Opin Hematol. 2012;19(1):58-60.

54.He K, Liu K, Daviglus ML, Morris SJ, Loria CM, van Horn L, et al. Magnesium intake and incidence of metabolic syndrome among young adults. Circulation. 2006;113:1675-82.

55.Hassan SAU, Ahmed I, Nasrullah A, Haq S, Ghazanfar H, Sheikh AB, et al. Comparison of serum magnesium levels in overweight and obese children and normal weight children. Cureus. 2017; 9:e1607.

56.Lu C, Chang H, Yang K, Kuo C, Lee L, Huang K. High serum selenium levels are associated with increased risk for diabetes mellitus independent of central obesity and insulin resistance. BMJ Open Diabetes Res Care. 2016;4.

57.González S, Huerta JM, Alvarez-Uría J, Fernández S, Patterson AM, Lasheras C. Serum selenium is associated with plasma homocysteine concentrations in elderly humans. J Nutr. 2004;134:1736-40.

58.Freeth A, Prajuabpansri P, Victory JM, Jenkins P. Assessment of selenium in Roux-en-Y gastric bypass and gastric banding surgery. Obes Surg. 2012;22:1660-5.

59.Dagan SS, Goldenshluger A, Globus I, Schweiger C, Kessler Y, Sandbank GK, et al. Nutritional recommendations for adult bariatric surgery patients: clinical practice. Adv Nutr. 2017;8(2):382-94.

60.Afshar S, Kelly SB, Seymour K, Woodcock S, Werner AD, Mathers JC. The effects of bariatric procedures on bowel habit. Obes Surg. 2016;26(10):2348-54.

61.Gonzalez-Sánchez JA, Corujo-Vázquez O, Sahai-Hernandez M. Bariatric surgery patients: reasons to visit emergency department after surgery. Bol Asoc Med P R. 2007;99:279-83.

62.Schweiger C, Weiss R, Keidar A. Effect of different bariatric operations on food tolerance and quality of eating. Obes Surg. 2010;20:1393-9.

63.Busetto L, Dicker D, Azran C, Batterham RL, Farpour-Lambert N, Fried M, et al. Practical recommendations of the obesity management task force of the european association for the study of obesity for the post-bariatric surgical medical management. Obes Facts. 2017;10:597-632.

64.Lakhani VS, Shah HN, Alexander K, Finelli FC, Kirkpatrick JR, Koch TR. Small intestinal bacterial overgrowth, and thiamine deficiency after Roux-en-Y gastric bypass surgery in obese patients. Nutr Res. 2008;28:293-8.

65.Schweiger C, Weiss R, Keidar A. Effect of different bariatric operations on food tolerance and quality of eating. Obes Surg. 2010;20:1393-9.

66.Handzlik-Orlik G, Holecki M, Orlik B, Wylezol M, Dulawa J. Nutrition management of the post-bariatric surgery patient. Nutr Clin Prac. 2015;30(3):383-92.

67.Loss AB, Souza AAP, Pitombo CA, Milcent M, Madureira FAV. Avaliação da síndrome de dumping em pacientes obesos mórbidos submetidos à operação de bypass gástrico com reconstrução em Y de Roux. Rev Col Bras Cir. 2009;36(5).

68.Tack J, Arts J, Caenepeel P, De Wulf D, Bisschops R. Pathophysiology, diagnosis and management of postoperative dumping syndrome. Nat Rev Gastroenterol Hepatol. 2009;6:583-90.

69.Chaves YS, Destefani AC. Fisiopatologia, diagnóstico e tratamento da síndrome de dumping e sua relação com a cirurgia bariátrica. ABCD Arq Bras Cir Dig. 2016;29(Supl.1):116-9.

70.Jacobi D, Ciangura C, Couet C, Oppert JM. Physical activity and weight loss following bariatric surgery. Obes Rev. 2011;12(5):366-77.

71.O’Brien PE, Hindle A, Brenna L, Skinner S, Burton P, Smith A, et al. Long-term outcomes after bariatric surgery: a systematic review and meta-analysis of weight loss at 10 or more years for all bariatric procedures and a single-centre review of 20-year outcomes after adjustable gastric banding. Obes Surg. 2019;29:3-14.

 

1.Gloy VL, Briel M, Bhatt DL, Kashyap SR, Schauer PR, Mingrone G et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. BMJ. 2013;347:f5934

2.Montastier E, Chalret du Rieu M, Tuyeras G, Ritz P. Long-term nutritional follow-up post bariatric surgery. Curr Opin Clin Nutr Metab Care. 2018;21(5):388-93.

3.Kaidar-Person O, Rosenthal RJ. Malnutrition in morbidly obese patients: fact or fiction? Minerva Chir. 2009;64(3):297-302.

4.Kant AK. Reported consumption of low-nutrient-density foods by American children and adolescents: nutritional and health correlates, NHANES III, 1988 to 1994. Arch Pediatr Adolesc Med. 2003 Aug;157(8):789-96.

5.Hampl JS, Betts NM. Comparisons of dietary intake and sources of fat in low- and high-fat diets of 18- to 24-year-olds. J Am Diet Assoc. 1995;95(8):893-7.

6.Brasil. Ministério da Saúde. Portaria n. 424, de 19 de março de 2013. Redefine as diretrizes para a organização da prevenção e do tratamento do sobrepeso e obesidade como linha de cuidado prioritária da Rede de Atenção à Saúde das Pessoas com Doenças Crônicas. Diário Oficial da União. 19 mar 2013.

7.Brasil. Ministério da Saúde. Portaria n. 425. Estabelece regulamento técnico, normas e critérios para a assistência de alta complexidade ao indivíduo com obesidade. Diário Oficial da União, 19 mar 2013.

8.Ramos CP, Mello ED. Manejo nutrológico no pós-operatório de cirurgia bariátrica. Int J Nutrol. 2015;8(2):39-49.

9.Cassie S, Menezes C, Birch DW, Shi X, Karmali S. Effect of preoperative weight loss in bariatric surgical patients: a systematic review. Surg Obes Relat Dis. 2011;7(6):760-7.

10.Alvarado R, Alami R, Hsu G, Safadi BY, Sanchez BR, Morton JM et al. The impact of preoperative weight loss in patients undergoing laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2005;15(9):1282–6.

11.Tabesh MR, Maleklou F, Ejtehadi F, Alzadeh Z. Correction to: Nutrition, physical activity, and prescription of supplements in pre- and post-bariatric surgery patients: a practical guideline. Obes Surg. 2020;30(2):793.

12.Kushner RF, Still CD (eds.). Nutrition and bariatric surgery. Boca Raton, FL: CRC Press; 2015.

13.Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA et al. Bariatric surgery versus intensive medical therapy for diabetes – 5-year outcomes. N Engl J Med. 2017;376:641-51.

14.Hood MM, Corsica J, Bradley L, Wilson R, Chirinos DA, Vivo A. Managing severe obesity: understanding and improving treatment adherence in bariatric surgery. J Behav Med. 2016;39:1092-103.

15.Dagan SS, Keidar A, Raziel A, Sakran N, Goitein D, Shibolet O et al. Do bariatric patients follow dietary and lifestyle recommendations during the first postoperative year? Obes Surg. 2017;27:2258-71.

16.Pellitero S, Martínez E, Puíg R, Leis A, Zavala R, Granada ML et al. Evaluation of vitamin and trace element requirements after sleeve gastrectomy at long term. Obes Surg. 2017;27(7):1674-82.

17.Tzovaras G, Papamargaritis D, Sioka E, Zachari E, Baloyiannis I, Zacharoulis D et al. Symptoms suggestive of dumping syndrome after provocation in patients after laparoscopic sleeve gastrectomy. Obes Surg. 2012;22:23-8.

18.Handzlik-Orlik G, Holecki M, Orlik B, Wyleżoł M, Duława J. Nutrition management of the post-bariatric surgery patient. Nutr Clin Pract. 2015;30(3):383-92.

19.Stoklossa CJ, Atwal S. Nutrition care for patients with weight regain after bariatric surgery. Gastroenterol Res Pract. 2013;2013:256145.

20.Service FJ, Natt N, Thompson GB, Grant CS, Heerden JA, Andrews JC et al. Noninsulinoma pancreatogenous hypoglycemia: a novel syndrome of hyperinsulinemic hypoglycemia in adults independent of mutations in Kir6.2 and SUR1 genes. J Clin Endocrinol Metab. 1999;84:1582-9.

21.Mechanick JI, Apovian C, Brethauer S, Garvey WT, Joffe AM, Kim J et al. Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures – 2019 update: cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, The Obese Society, American Society for Metabolic & Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists – executive summary. Endocr Pract. 2019;25(12):1346-59.

22.Associação Brasileira de Nutrologia; Tomaz BA, Cômodo ARO, Dias ACF, Silva-Filho AA, Santos JE, Ribas DF, Marchini JS. Avaliação nutrológica pré e pós-operatória em cirurgia bariátrica. Projeto Diretrizes; 2009.

23.Bordalo LA. Teixeira TFS, Bressan J, Mourão DM. Cirurgia bariátrica: como e por que suplementar. Rev Assoc Med Bras. 2011;57(1):113-20.

24.De Luca M, Angrisani L, Himpens J, Busetto L, Scopinaro N, Weiner R et al. Indications for surgery for obesity and weight-related diseases: position statements from the Internacional Federation for the Surgery of Obesity and Metabolic Disorders (IFSO). Obes Surg. 2016;26(8):1659-96.

25.Cambi MPC, Baretta GAP. Guia alimentar bariátrico: modelo do prato para pacientes submetidos à cirurgia bariátrica. ABCD Arq Bras Cir Dig. 2018;31(2):e1375.

26.Padwal R, Brocks D, Sharma AM. A systematic review of drug absorption following bariatric surgery and its theoretical implications. Obes Rev. 2010;11:41-50.

27.Allied Health Sciente Section Ad Hoc nutrition Committee; Aills L, Blankenship J, Bungton C, Furtado M, Parrot J. ASMBS Allied Health nutritional guidelines for the surgical weight loss patient. Surg Obes Relat Dis. 2008;4(5 Suppl):S73-108.

28.Mechanik Ji, Youdim A, Jones DB, Garvey WT, Hurley DL, McMahon MM et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient – 2013 update: cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery. Obesity (Silver Spring) 2013;21 Suppl 1(01):S1-27.

29.Andreu A, Moize V, Rodriguez L, Flores L, Vidal J. Protein intake, body composition, and protein status following bariatric surgery. Obes Surg. 2010;20:1509-15.

30.Faria SL, Faria OP, Buffington C, Cardeal MA, Ito MK. Dietary protein intake and bariatric surgery patients: a review. Obes Surg. 2011;21(11):1798-805.

31.Fujioka K. Follow-up of nutritional and metabolic problems after bariatric surgery. Diabetes Care. 2005;28(2):481-4.

32.Koch TR, Finelli FC. Postoperative metabolic and nutritional complications of bariatric surgery. Gastroenterol Clin N Am. 2010;39:109-24.

33.Pinnock GL. Nutritional management after bariatric surgery. In: Agrawal S (ed.). Obesity, bariatric and metabolic surgery. Switzerland: Springer, Cham; 2016.

34.Moize V, Laferrere B, Vidal J. Protein nutrition and status and bariatric surgery. In: Rajendram R, Preedy V, Martin C (eds.). Metabolism and pathophysiology of bariatric surgery. Chicago: Academic Press; 2017.

35.Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica (Abeso). Diretrizes brasileiras de obesidade: 2016. 4.ed. São Paulo: Abeso; 2016. Disponível em: https://abeso.org.br/wp-content/uploads/2019/12/Diretrizes-Download-Diretrizes-Brasileiras-de-Obesidade-2016.pdf; acessado em: 5 de agosto de 2021.

36.Llanos JPS, Ferrer MF, Alvarez-Sala-Walther L, Bray BG, González LM, Lesmes IB et al. Protein malnutrition incidence comparison after gastric bypass versus biliopancreatic diversion. Nutr Hosp. 2015;32(1):80-6.

37.Gobato RC, Seixas Chaves DF, Chaim EA. Micronutrient and physiologic parameters before and 6 months after RYGB. Surgery for Obesity and Related Dis. 2014;10(5):944-51.

38.Kim ES, Keam SJ. Teduglutide: a review in short bowel syndrome. Drugs. 2017;77(3):345-52.

39.Said HM. Intestinal absorption of water-soluble vitamins in health and disease. Biochem J. 2011;437(3):357-72.

40.Liu D, Ke Z, Luo J. Thiamine deficiency and neurodegeneration: the interplay among oxidative stress, endoplasmic reticulum stress, and autophagy. Mol Neurobiol. 2017;54(7):5440-8.

41.Zhao R, Matherly LH, Goldman ID. Membrane transporters and folate homeostasis: intestinal absorption and transport into systemic compartments and tissues. Expert Rev Mol Med. 2009;11:e4.

42.Reynolds EH. The neurology of folic acid deficiency. Handb Clin Neurol. 2014;120:927-43.

43.Baltaci D, Deler MH, Turker Y, Ermis F, Iliev D, Velioglu U. Evaluation of serum vitamin B12 level and related nutritional status among apparently healthy obese female individuals. Niger J Clin Pract. 2017;20(1):99-105.

44.Moore CE, Sherman V. Effectiveness of B vitamin supplementation following bariatric surgery: rapid increases of serum vitamin B12. Obes Surg. 2013;25(4):694-9.

45.Grasbeck R. Hooked to vitamin B12 since 1955: a historical perspective. Biochimie. 2013;95(5):970-5.

46.Gehrer S, Kern B, Peters T, Christoffel-Courtin C, Peterli R. Fewer nutrient deficiencies after laparoscopic sleeve gastrectomy (LSG) than after laparoscopic Roux-Y-gastric bypass (LRYGB): a prospective study. Obes Surg. 2010;20(4):447-53.

47.Coupaye M, Riviere P, Breuil MC, Castel B, Bogard C, Dupre T et al. Comparison of nutritional status during the first year after sleeve gastrectomy and Roux-en-Y gastric bypass. Obes Surg. 2014;24(2):276-83.

48.Riess KP, Farnen JP, Lambert PJ, Mathiason MA, Kothari SN. Ascorbic acid deficiency in bariatric surgical population. Surg Obes Relat Dis. 2009;5(1):81-6.

49.Homan J, Betzel B, Aarts EO, Dogan K, van Laarhoven KJ, Janssen IM et al. Vitamin and mineral deficiencies after biliopancreatic diversion and biliopancreatic diversion with duodenal switch: the rule rather than the exception. Obes Surg. 2015;25(9):1626-32.

50.Kappus H, Diplock AT. Tolerance and safety of vitamin E: a toxicological position report. Free Radic Biol Med. 1992;13(1):55-74.

51.Homan J, Ruinemans-Koerts J, Aarts EO, Janssen IM, Berends FJ, de Boer H. Management of vitamin K deficiency after biliopancreatic diversion with or without duodenal switch. Sur Obes Relat Dis. 2016;12(2):338-44.

52.Jin J, Robinson AV, Hallowell PT, Jasper JJ, Stellato TA, Wilhem SM. Increases in parathyroid hormone (PTH) after gastric bypass surgery appear to be of a secondary nature. Surgery. 2007;142(6):914-20.

53.Youssef Y, Richards WO, Sekhar N, Kaiser J, Spagnoli A, Abumrad N et al. Risk of secondary hyperparathyroidism after laparoscopic gastric bypass surgery in obese women. Surg Endosc. 2007;21(8):1393-6.

54.Aarts E, van Groningen L, Horst R, Telting D, van Sorge A, Janssen I et al. Vitamin D absorption: consequences of gastric bypass surgery. Eur J Endocrinol. 2011;164(5):827-32.

55.Lieske JC, Mehta RA, Milliner DS, Rule AD, Bergstralh EJ, Sarr MG. Kidney stones are common after bariatric surgery. Kidney Int. 2015;87(4):839-45.

56.Han O. Molecular mechanism of intestinal iron absorption. Metallomics. 2011;3(2):103-9.

57.Coupaye M, Puchaux K, Bogard C, Msika S, Jouet P, Clerici C et al. Nutritional consequences of adjustable gastric banding and gastric bypass: a 1-year prospective study. Obes Surg. 2009;19(1):56-65.

58.Ruz M, Carrasco F, Rojas P, Codoceo J, Inostroza J, Basfi-fer K et al. Zinc absorption and zinc status are reduced after Roux-en-Y gastric bypass: a randomized study using 2 supplements. Am J Clin Nutr. 2011;94(4):1004-11.

 

1.Finkelstein EA, Khavjou OA, Thompson H, Trogdon JG, Pan L, Sherry B, et al. Obesity and severe obesity forecasts through 2030. Am J Prev Med. 2012;42:563-70.

2.Instituto Brasileiro de Geografia e Estatística – IBGE. Disponível em: http://www.ibge.gov.br; acessado em: 15 de maio de 2020.

3.Karamitri A, Jockers R. Melatonin in type 2 diabetes mellitus and obesity. Nat Rev Endocrinol. 2019 Feb;15(2):105-25. doi:10.1038/s41574-018-0130-1.

4.Schetz M, De Jong A, Deane AM, Druml W, Hemelaar P, Pelosi P, et al. Obesity in the critically ill: a narrative review. Intensive Care Med. 2019;45(6):757-69. doi:10.1007/s00134-019-05594-1.

5.Ribas Filho D, Suen VMM. Tratado de nutrologia. 2a ed. Barueri: Manole; 2018.

6.Apovian CM. Obesity: definition, comorbidities, causes, and burden. Am J Manag Care. 2016;22(7 Suppl):s176-s185.

7.Andolfi C, Fisichella PM. Epidemiology of obesity and associated comorbidities. J Laparoendosc Adv Surg Tech A. 2018;28(8):919-24. doi:10.1089/lap.2018.0380.

8.Organização Mundial de Saúde – OMS. Disponível em: https://www.sbcbm.org.br/endoscopia-e-obesidade/; acessado em: 16 de abril de 2020.

9.Tutuian R. Obesity and GERD: pathophysiology and effect of bariatric surgery. Curr Gastroenterol Rep. 2011;13:205-12.

10.Sood A, Shore SA. Adiponectin, leptin, and resistin in asthma: basic mechanisms through population studies. J Allergy (Cairo). 2013;2013:785835.

11.Landecho MF, Tuero C, Valentí V, Bilbao I, de la Higuera M, Frühbeck G. Relevance of leptin and other adipokines in obesity-associated cardiovascular risk. Nutrients. 2019;11(11):2664. Published 2019 Nov 5. doi:10.3390/nu11112664.

12.Lauby-Secretan B, Dossus L, Marant-Micallef C, His M. Obésité et cancer [Obesity and cancer]. Bull Cancer. 2019;106(7-8):635-46. doi:10.1016/j.bulcan.2019.04.008.

13.Jensen P, Skov L. Psoriasis and obesity. Dermatology. 2016;232(6):633-9. doi:10.1159/000455840.

14.Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88. Published 2009 Mar 25. doi:10.1186/1471-2458-9-88.

15.Da Luz FQ, Hay P, Touyz S, Sainsbury A. Obesity with comorbid eating disorders: associated health risks and treatment approaches. Nutrients. 2018;10(7):829. Published 2018 Jun 27. doi:10.3390/nu10070829.

1.Haslam DW, James WPT. Obesity. Lancet. 2005;1197-209.

2.World Health Organization – WHO. Obesity: preventing and managing the global epidemic. World Health Organization: Technical Report Series. WHO Technical Report Series, n. 894. 2000. p. 252.

3.Pischon T. Use of obesity biomarkers in cardiovascular epidemiology. Dis Markers. 2009;26:247-63.

4.Nimptsch K, Konigorski S, Pischon T. Diagnosis of obesity and use of obesity biomarkers in science and clinical medicine. Metabolism. 2019;92:61-70.

5.Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome: a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med. 2006;23:469-80.

6.Grundy SM, Becker D, Clark LT, Cooper RS, Denke MA, Howard J, et al. Detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Circulation. 2002.106:3143-421.

7.Wolf HK, Tuomilehto J, Kuulasmaa K, Domarkiene S, Cepaitis Z, Molarius A, et al. Blood pressure levels in the 41 populations of the WHO MONICA project. J Hum Hypertens. 1997;11(11):733-42.

8.Wannamethee SG, Shaper AG, Durrington PN, Perry IJ. Hypertension, serum insulin, obesity and the metabolic syndrome. J Hum Hypertens. 1998;12(11):735-41.

9.World Health Organization – WHO. Diet, nutrition and the prevention of chronic diseases. Geneva: WHO; 2014.

10.Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology. 2018;14: 88-98.

11.Di Cesare M, Bentham J, Stevens GA, Zhou B, Danaei G, Lu Y, et al. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016 Apr 2;387(10026):1377-96.

12.Green BB, Weiss NS, Daling JR. Risk of ovulatory infertility in relation to body weight. Supported in part by the National Institute of Child Health and Development, contract NOI HD 02821. Fertil Steril. 1988 Nov;50(5):721-6.

13.Esposito K, Giugliano F, Di Palo C, Giugliano G, Marfella R, D’Andrea F, et al. Effect of lifestyle changes on erectile dysfunction in obese men: a randomized controlled trial. J Am Med Assoc. 2004 Jun 23;291(24):2978-84.

14.Sanyal D, Raychaudhuri M. Hypothyroidism and obesity: an intriguing link. Indian J Endocrinol Metab. 2016;20:554-7.

15.Ali N, Perveen R, Rahman S, Mahmood S, Rahman S, Islam S, et al. Prevalence of hyperuricemia and the relationship between serum uric acid and obesity: a study on Bangladeshi adults. PLoS One. 2018 Nov;13(11).

16.Liu R, Han C, Wu D, Xia X, Gu J, Guan H, et al. Prevalence of hyperuricemia and gout in Mainland China from 2000 to 2014: a systematic review and meta-analysis. 2015. Disponível em: http://dx.doi.org/10.1155/2015/762820; acessado em: 04 de maio de 2020.

17.Azevedo VF, Lopes MP, Catholino NM, Paiva E dos S, Araújo VA, Pinheiro G da RC. Critical revision of the medical treatment of gout in Brazil. Rev Bras Reumatol (English ed). 2017 Jul;57(4):346-55.

18.Martins J, Jorge E, Camolas J, Carmo I do. Estratégias para intervenção nutricional na hiperuricemia e gota. Rev Nutrícias. 2013;(19):28-31. Disponível em: http://www.scielo.mec.pt/scielo.php?script=sci_arttext&pid=S2182-72302013000400006&lng=pt&nrm=iso&tlng=pt; acessado em: 04 de maio de 2020.

19.Dieta para hiperuricemia (ácido úrico elevado no sangue) – Portal do Coração. Disponível em: http://portaldocoracao.com.br/dieta-para-hiperuricemia-acido-urico-elevado-no-sangue/; acessado em: 04 de maio de 2020.

20.Marques CDL, Dantas AT, Fragoso TS, Duarte ALBP. The importance of vitamin D levels in autoimmune diseases. Revista Brasileira de Reumatologia. 2010;50:67-80.

21.Barrea L, Muscogiuri G, Laudisio D, Di Somma C, Salzano C, Pugliese G, et al. Phase angle: a possible biomarker to quantify inflammation in subjects with obesity and 25(OH)D deficiency. Nutrients. 2019 Aug 1;11(8).

22.Migliaccio S, Di Nisio A, Mele C, Scappaticcio L, Savastano S, Colao A. Obesity and hypovitaminosis D: causality or casualty? Int J Obes Suppl. 2019 Apr;9(1):20-31.

23.Ribas Filho D, de Almeida CAN, de Oliveira Filho AE. Posicionamento atual sobre vitamina D na prática clínica: posicionamento da Associação Brasileira de Nutrologia (Abran). Int J Nutrology. 2019 Dec 29;12(3):82-96. Disponível em: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0040-1709661; acessado em: 05 de maio de 2020.

24.Dutra-de-Oliveira JE, Marchini S. Ciências nutricionais: aprendendo a aprender. 2. ed. São Paulo: Sarvier; 2008.

25.Andriolo A, Moreira SR, Silva LA, Carvalho AB de, Vieira JGH, Ghiringhello MT, et al. Cálcio ionizado no soro: estimativa do intervalo de referência e condições de coleta. J Bras Patol e Med Lab. 2004 Apr;40(2):85-9.

26.Cálcio iônico. Disponível em: http://www.labhpardini.com.br/lab/bioquimica/caionico.htm; acessado em: 04 de maio de 2020.

27.López-Gómez JJ, Pérez Castrillón JL, de Luis Román DA. Influencia de la obesidad sobre el metabolismo óseo. Endocrinol Nutr. 2016;63:551-9.

28.Francisca Sousa ADE, Poltronieri F, Nascimento Marreiro DDO. Participação do cálcio na obesidade [Role of calcium in obesity]. Nutrire. 2008;33(1):117-30.

29.Song Q, Sergeev IN. Calcium and vitamin D in obesity. Nutr Res Rev. 2012;25:130-41.

30.Pallayova M, Taheri S. Non-alcoholic fatty liver disease in obese adults: clinical aspects and current management strategies. Clin Obes. 2014 Oct;4(5):243-53.

 

1.Prado SD, Amparo-Santos L, Ferreira da Silva L, Arnaiz MB, Bosi MLM (orgs). Estudos socioculturais em alimentação e saúde: saberes em rede. Rio de Janeiro: EDUERJ, 2016. Sabor Metrópole Series, v.5. doi:10.7476/9788575114568.

2.Bray GA, Heisel WE, Afshin A, Jensen MD, Dietz WH, Long M, et al. The science of obesity management: an Endocrine Society Scientific Statement. Endocr Rev. 2018;39(2):79-132. doi:10.1210/er.2017-00253.

1.Lyra R, Azevedo Júnior LGG, Diniz ET, Ibiapina GR, Veloso IGL, Frasão K, et al. Diabetes melito: classificação e diagnóstico. In: Vilar L. Endocrinologia clínica. 6.ed. Rio de Janeiro: Guanabara Koogan; 2016. p.641-56.

2.American Diabetes Association. Standards of medical care in diabetes. Diabetes Care. 2017;40 (Suppl1):1-131.

3.Ribas Filho D, Suen VMM. Tratado de nutrologia. Foss-Freitas MC, Foss MC, Foss NT. 2a ed. Barueri: Manole; 2018. p.545-63.

4.Franz MJ, Boucher JL, Rutten-Ramos S, Van Worner JJ. Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta-analyses of randomized clinical trials. J Acad Nutr Diet. 2015 Sep;115(9):1447-63.

5.Sociedade Brasileira de Diabetes. Diretrizes da Sociedade Brasileira de Diabetes 2017-2018. São Paulo: Clannad; 2017.

6.Sales P, Halpern A, Cercato C. O essencial em endocrinologia. Rio de Janeiro: Roca; 2017. p.555-7.

7.American Diabetes Association. Physical activity/exercise and diabetes. Diabetes Care. 2004;27 (Suppl.1):58-62.

8.The Oxford Centre for Diabetes, Endocrinology and Metabolism. UKPDS risk engine. Disponível em: https://www.dtu.ox.ac.uk/riskengine/; acessado em: 1 de outubro de 2018.

9.Sales P, Halpern A, Cercato C. O essencial em endocrinologia. Rio de Janeiro: Roca; 2017. p.753-63.

10.American Diabetes Association. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes – 2018. Diabetes Care. 2018;41(Supl.1):S73-S85.

11.Lyra R, Cavalcanti N, Albuquerque JL, Thé AC, Vilar L. Tratamento farmacológico do diabetes melito tipo 2. In: Vilar L. Endocrinologia clínica. 6.ed. Rio de Janeiro: Guanabara Koogan; 2016. p.657-87.

12.Sjostrom L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683-93.

13.Dixon JB, Zimmet P, Alberti KG; International Diabetes Federation Task-force on Epidemiology and Prevention. Bariatric surgery: an IDF statement for obese type 2 diabetes. Arq Bras Endocrinol Metabol. 2011;55:367-82.

 

3.Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Análise em Saúde e Vigilância de Doenças Não Transmissíveis. Vigitel Brasil 2018: vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico: estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados brasileiros e no Distrito Federal em 2018. Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Análise em Saúde e Vigilância de Doenças não Transmissíveis. Brasília: Ministério da Saúde; 2019. Disponível em: https://portalarquivos2.saude.gov.br/images/pdf/2019/julho/25/vigitel-brasil-2018.pdf; acessado em: 17 de agosto de 2021.

4.Ribas Filho D, SVMM. Tratado de nutrologia. 2.ed. Barueri: Manole; 2019.

5.Sociedade Brasileira de Diabetes. Diretrizes da SBD 2019-2020. Disponível em: https://www.diabetes.org.br/profissionais/images/DIRETRIZES-COMPLETA-2019-2020.pdf.

6.Wharton S, Kuk JL, Luszczynski M, Kamran E, Christensen RAG. Liraglutide 3.0 mg for the management of insufficient weight loss or excessive weight regain post-bariatric surgery [published correction appears in Clin Obes. 2019 Dec;9(6):e12338]. Clin Obes. 2019;9(4):e12323. doi:10.1111/cob.12323.

7.Qi X. Review of the clinical effect of orlistat. IOP Conf Ser: Mater Sci Eng. 2008;301. Disponível em: https://iopscience.iop.org/article/10.1088/1757-899X/301/1/012063/pdf; acessado em: 17 de agosto de 2021.

8.Cummings DE, Rubino F. Metabolic surgery for the treatment of type 2 diabetes in obese individuals. Diabetologia. 2018;61(2):257-64. doi:10.1007/s00125-017-4513-y.

9.Klop B, Elte JWF, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013;5:1218-40. doi:10.3390/nu5041218.

10.Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V. Obesity and dyslipidemia. Metabolism. 2019 Mar;92:71-81. doi:10.1016/j.metabol.2018.11.005.

11.Faludi AA, Izar MCO, Saraiva JFK, Chacra APM, Bianco HT, Afiune A Neto, et al. Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose – 2017. Arq Bras Cardiol. 2017 v.109 n.2 supl. Disponível em: http://publicacoes.cardiol.br/2014/diretrizes/2017/02_DIRETRIZ_DE_DISLIPIDEMIAS.pdf; acessado em: 17 de agosto de 2021.

12.Kotsis V, Tsioufis K, Antza C, Seravalle G, Coca A, Sierra C, et al. Obesity and cardiovascular risk: a call for action from the European Society of Hypertension Working Group of Obesity, Diabetes and the High-risk Patient and European Association for the Study of Obesity: part B: obesity-induced cardiovascular disease, early prevention strategies and future research directions. J Hypertens. 2018;36:1441-55. doi:10.1097/HJH.0000000000001730.

13.Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J. 2016;14(37):2999-3058. doi:10.1093/eurheartj/ehw272.

14.Fox CS, Pencina MJ, Wilson PWF, Paynter NP, Vasan RS, D’Agostino RB. Lifetime risk of cardiovascular disease among individuals with and without diabetes stratified by obesity status in the Framingham Heart Study. Diabetes Care. 2008;31:1582-4.

15.Landsberg L, Aronne LJ, Beilin LJ, Burke V, Igel LI, Lloyd-Jones D, et al. Obesity related hypertension: pathogenesis, cardiovascular risk, and treatment: a position paper of The Obesity Society and the American Society of Hypertension. J Clin Hypertens (Greenwich). 2013;15:14-33.

16.American Heart Association. Overweight and Obesity Statistics – 2009. Update 2009.

17.Leggio M, Lombardi M, Caldarone E, Severi P, D’Emidio S, Armeni M, et al. The relationship between obesity and hypertension: an updated comprehensive overview on vicious twins. Hypertens Res. 2017;40:947-63. doi:10.1038/hr.2017.75.

18.Appel LJ. ASH position paper: dietary approaches to lower blood pressure. J Am Soc Hypertens. 2009;3:321-31.

19.Aucott L, Poobalan A, Smith WC, Avenell A, Jung R, Broom J. Effects of weight loss in overweight/obese individuals and long-term hypertension outcomes: a systematic review. Hypertension. 2005;45:1035-41.

20.Fagard RH. Exercise is good for your blood pressure: effects of endurance training and resistance training. Clin Exp Pharmacol Physiol. 2006;33:853-6.

21.Cox KL, Puddey IB, Morton AR, Burke V, Beilin LJ, McAleer M. Exercise and weight control in sedentary overweight men: effects on clinic and ambulatory blood pressure. J Hypertens. 1996;14:779-90.

22.Puddey IB, Beilin LJ. Alcohol is bad for blood pressure. Clin Exp Pharmacol Physiol. 2006;33:847-52.

23.Appel LJ. ASH position paper: dietary approaches to lower blood pressure. J Am Soc Hypertens. 2009;3:321-31.

24.Canoy D, Wareham N, Luben R, Welch A, Bingham S, Day N, et al. Cigarette smoking and fat distribution in 21,828 British men and women: a population-based study. Obes Res. 2005;13:1466-75.

25.Rhee MY, Na SH, Kim YK, Lee MM, Kim HY. Acute effects of cigarette smoking on arterial stiffness and blood pressure in male smokers with hypertension. Am J Hypertens. 2007;20:637-41.

26.Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med. 2011;364:2392-404.

27.DiNicolantonio JJ, Fares H, Niazi AK, Chatterjee S, D’Ascenzo F, Cerrato E, et al. β-blockers in hypertension, diabetes, heart failure and acute myocardial infarction: a review of the literature. Open Heart. 2015;2:e000230.

28.Kaplan HI, Sadock BJ. Compêndio de psiquiatria. 11.ed. Porto Alegre: Artes Médicas; 2017. p.543.

29.Teixeira AD. Maior o peso, menor o salário? O impacto da obesidade no mercado de trabalho [dissertação]. São Paulo: Universidade de São Paulo; 2016.

30.Centers for Disease Control and Prevention. Adult obesity: causes & consequences. Disponível em: https://www.cdc.gov/obesity/adult/causes.html; acessado em: 17 de agosto de 2021.

31.Instituto Nacional de Câncer – Inca. Disponível em: www.inca.gov.br; acessado em: 17 de agosto de 2021.

32.Lauby-Secrétan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. Body fatness and cancer: viewpoint of the IARC Working Group. N Engl J Med. 2016; 375:794-8.

33.Ottaiano A, De Divitiis C, Capozzi M, Avallone A, Pisano C, Pignata S, et al. Obesity and cancer: biological links and treatment implications. Current Cancer Drug Targets; 2018;18: 231-8.

34.Ottaiano A, Nappi A, Tafuto S, Nasti G, De Divitiis C, Romano C, et al. Diabetes and body mass index are associated with neuropathy and prognosis in colon cancer patients treated with capecitabine and oxaliplatin adjuvant chemotherapy. Oncology. 2016;90:36-42.

35.Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J. Role of AMP activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167-74.

36.Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol. 2009;27:3297-302.

37.Senaratna CV, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC. Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev. 2017;34:70-81.

38.Modena D, Cazzo E, Cândido E, Baltieri L, Jaroslavsky L, Silveira B. Obstructive sleep apnea syndrome among obese individuals: A cross-sectional study. Rev Assoc Med Bras. 2017;63(10):862-8.

39.Hudgel D, Patel S, Ahasic A, Bartlett S, Bessesen D, Coaker M. The role of weight management in the treatment of adult obstructive sleep apnea. Am J Respir Crit Care Med. 2018;198(6):710-23.

40.Bonfrate L, Wang D, Garruti G, Portincasa P. Obesity and the risk and prognosis of gallstone disease and pancreatitis. Best Pract Res Clin Gastroenterol. 2014;28:623-35.

41.Lemstra M, Rogers M. Improving health-related quality of life through an evidence-based obesity reduction program: the Healthy Weights Initiative. J Multidiscip Healthc. 2016;9:103-9.

42.Blissmer B, Riebe D, Dye G, Ruggiero L, Greene G, Caldwell M. Health-related quality of life following a clinical weight loss intervention among overweight and obese adults: intervention and 24 month follow-up effects. Health Qual Life Outcomes. 2006;4:43.

43.National Clinical Guideline Centre (UK). Osteoarthritis: Care and Management in Adults. London: National Institute for Health and Care Excellence (UK); 2014 Feb.

44.Kulkarni K, Karssiens T, Kumar V, Pandit H. Obesity and osteoarthritis. Maturitas. 2016;89:22-8.

45.Nobrega FJD (org.). O que você quer saber sobre nutrição – Perguntas e respostas comentadas. Cap.42 – Durval Ribas Filho. Barueri: Manole; 2008. p.399-414.

1.Rahimi RS, Landaverde C. Nonalcoholic fatty liver disease and the metabolic syndrome: clinical implications and treatment. Nutr Clin Pract. 2013;28(1):40-51.

2.Castro L, Silva G. Hígado graso no alcohólico. Rev Med Clin Condes. 2015;26(5):600-12.

3.Mauss S, Berg T, Rockstroh J, Sarrazin C, Wedemeyer H. Hepatology – A Clinical Textbook [ebook]. 9. ed. 2018. Disponível em: www.hepatologytextbook.com.

4.Angulo P. Enfermedad grasa del hígado y esteatohepatitis no alcohólica. Rev Gastroenterol Mex. 2004;69(3):140-8.

5.Esquivel M. Esteatosis hepática, obesidad y comorbilidades. Rev Gastroenterol Mex. 2008;73(2):22-8.

6.Bernal-Reyes R. Hígado graso, esteatohepatitis no alcohólica y alcohólica. Revista de Gastroenterología de México. 2015;80(1):41-3.

7.Koppe S. Obesity and the liver: nonalcoholic fatty liver disease. Translational. 2014;164(4):312-22.

8.Colina MEM, Monzón CG. Obesidad y enfermedad hepática. GH Continuada. 2011;10(5):208-13.

9.Botta C, Perendones M. Nuñez M, Nieto G, Levratto M, Fuentes L, et al. Enfermedad hepática grasa no alcohólica. Tendencias en Medicina. 2016;49:159-68.

10.Gallego R, Ampuero J, Funuyet J, Romero M. Esteatohepatitis alcohólica y no alcohólica: ¿quiénes son los pacientes y qué podemos hacer por ellos?. Gastroenterol Hepatol. 2013;36(9):587-96.

11.Farías M, Silva C, Rozowski J. Microbiota intestinal: rol en obesidad. Rev Chil Nutr. 2011;38(2):228-33.

12.Tinahones F. Microbiota intestinal y obesidad. Nutr Clin Med. 2013;VII (2):74-86.

13.Vajro P, Paolella G, Fasano A. Microbiota and gut-liver axis: their influences on obesity and obesity-related liver disease. J Pediatr Gastroenterol Nutr. 2013;56(5):461-8.

14.Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328-57.

15.Li H, Fang Q, Gao F, Fan J, Zhou J, Wang X, et al. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. J Hepatol. 2010;53(5):934-40.

16.Kharitonenkov A, DiMarchi R. FGF21 revolutions: recent advances illuminating FGF21 biology and medicinal properties. Trends Endocrinol Metab. 2015;26(11):608-17.

17.Li H, Dong K, Fang Q, Hou X, Zhou M, Bao Y, et al. High serum level of fibroblast growth factor 21 is an independent predictor of non-alcoholic fatty liver disease: a 3-year prospective study in China. J Hepatol. 2013;58(3):557-63.

18.Maher MM, Ibrahim WA, Saleh SA, Shash L, Gabal HA, Tarif M, et al. Cytokeratin 18 as a non invasive marker in diagnosis of NASH and its usefulness in correlation with disease severity in Egyptian patients. Egypt J Med Hum Genet. 2015;16(1):41-6.

19.Feldstein AE, Wieckowska A, Lopez AR, Liu YC, Zein NN, McCullough AJ. Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: a multicenter validation study. Hepatology. 2009;50(4):1072-8.

20.Ronald R, Preedy V. Dietary Interventions in Liver Disease Foods, Nutrients, and Dietary Supplements. London: Megan Ashdown; 2019.

21.European Association for the Study of the Liver; European Association for the Study of the Liver. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J Hepatol. 2019;70(1):172-93.

22.European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388-402.

23.Plauth M, Bernal W, Dasarathy S, Merli M, Plank LD, Schütz T, et al. ESPEN guideline on clinical nutrition in liver disease. Clin Nutr. 2019;38(2):485-521.

24.Athyros VG, Alexandrides TK, Bilianou H, Cholongitas E, Doumas M, Ganotakis ES, et al. The use of statins alone, or in combination with pioglitazone and other drugs, for the treatment of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and related cardiovascular risk. An Expert Panel Statement. Metabolism. 2017;71:17-32.

25.Glen J. Non-alcoholic fatty liver disease (NAFLD): summary of NICE guidance. BMJ. 2016;354:1-7.

26.Houghton D, Thoma C, Hallsworth K, Cassidy S, Hardy T, Burt AD, et al. Exercise reduces liver lipids and visceral adiposity in patients with nonalcoholic steatohepatitis in a randomized controlled trial. Clin Gastroenterol Hepatol. 2017;15(1):96-102.e3.

27.Dongiovanni P, Lanti C, Riso P, Valenti L. Nutritional therapy for nonalcoholic fatty liver disease. J Nutr Biochem. 2016;29:1-11.

28.Zhanga QS, Tian FW, Zhao JX, Zhang H, Zhai QX, Chen W. The influence of dietary patterns on gut microbiome and its consequences for nonalcoholic fatty liver disease. Trends Food Sci Technol. 2020;96:135-44.

29.Lu W, Li S, Li J, Wang J, Zhang R, Zhou Y, et al. Effects of omega-3 fatty acid in nonalcoholic fatty liver disease: a meta-analysis. Gastroenterol Res Pract. 2016;2016:1459790.

30.Di Minno MN, Russolillo A, Lupoli R, Ambrosino P, Di Minno A, Tarantino G. Omega-3 fatty acids for the treatment of non-alcoholic fatty liver disease. World J Gastroenterol. 2012;18(41):5839-47.

31.He XX, Wu XL, Chen RP, Chen C, Liu XG, Wu BJ, et al. Effectiveness of omega-3 polyunsaturated fatty acids in non-alcoholic fatty liver disease: a meta-analysis of randomized controlled trials. PLoS One. 2016;11(10):e0162368.

32.Nogueira MA, Oliveira CP, Ferreira Alves VA, Stefano JT, Rodrigues LS, Torrinhas RS, et al. Omega-3 polyunsaturated fatty acids in treating non-alcoholic steatohepatitis: a randomized, double-blind, placebo-controlled trial. Clin Nutr. 2016;35(3):578-86.

33.Martínez-González JJ, Ortiz-Hernández A, Regil Sandoval JI, Sánchez-Cosme A. Impact of coffee on liver diseases. JMSR. 2018;2(1):3-14.

34.Chen YP, Lu FB, Hu YB, Xu LM, Zheng MH, Hu ED. A systematic review and a dose-response meta-analysis of coffee dose and nonalcoholic fatty liver disease. Clin Nutr. 2019;38(6):2552-7.

35.Barros RK, Cotrim HP, Daltro C, Alves E, de Freitas LA, Daltro C, et al. Nonalcoholic steatohepatitis in morbid obese patients: coffee consumption vs. disease severity. Ann Hepatol. 2016;15(3):350-5.

36.Catalano D, Martines GF, Tonzuso A, Pirri C, Trovato FM, Trovato GM. Protective role of coffee in non-alcoholic fatty liver disease (NAFLD). Dig Dis Sci. 2010;55(11):3200-6.

37.Aguilar-Olivos NE, Almeda-Valdes P, Aguilar-Salinas CA, Uribe M, Méndez-Sánchez N. The role of bariatric surgery in the management of nonalcoholic fatty liver disease and metabolic syndrome. Metabolism. 2016;65(8):1196-207.

38.Ampuero J, Sánchez-Torrijos Y, Aguilera V, Bellido F, Romero-Gómez M. Nuevas perspectivas terapéuticas en la esteatohepatitis no alcohólica. Gastroenterol Hepatol. 2018;41(2):128-42.

39.EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64:1388-402.

40.Doulberis M, Kotronis G, Gialamprinou D, Kountouras J, Katsinelos P. Non-alcoholic fatty liver disease: an update with special focus on the role of gut microbiota. Metabolism. 2017;71:182-97.

1.World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO Consultation on Obesity. Technical Report Series. 2000; 894:i-xii:1-253.

2.Casanello P, Krause B, Castro J, Rodríguez et al. Epigenética y obesidad. Rev Chil Pediatr. 2016;87(5):335-42. http://dx.doi.org/10.1016/j.rchipe.2016.08.009.

3.Zugaib M, Ruocco RMSA. Pré-natal. 3.ed. São Paulo: Atheneu; 2005. Capítulo 29.

4.Sogimig. Manual de ginecologia e obstetrícia. Belo Horizonte: Coopmed; 2012. Capítulo 5.

5.Knopp RH, et al. Metabolic adjustments in normal and diabetic pregnancy. Cl Obstet Gynecol. 1981;24:21.

6.Hollingsworth DR. Maternal metabolism in normal pregnancy and pregnancy complicated by diabetes mellitus. Cl Obstetr Gynecol. 1985;28:457.

7.Brasil. Ministério da Saúde. Inquérito domiciliar de comportamentos de risco morbidade referida de doenças e agravos não transmissíveis. [S.d.] Disponível em: http://www.inca.gov.br/inquerito/docs/sobrepesoobesidade.pdf.

8.Shils ME, Olson JA, Shike M, Ross AC, Caballero B, Cousins RJ (eds.). Nutrição moderna de Shils na saúde e na doença. 11.ed. Barueri: Manole; 2016. Capítulo 52.

9.IOM (Institute of Medicine), NRC (National Research Council). Weight gain during pregnancy: reexamining the guidelines. The National Academies Press. Washington, DC: The National Academic Press; 2009.

10.Neme B, 1915. Obstetrícia básica. 2.ed. São Paulo: Sarvier; 2000. Capítulos 6 e 55.

11.Diniz LEV. Nutrição e gravidez. In: Zugaib, Sancovski. O pré-natal. São Paulo: Atheneu; 1991. Capítulo 10. p.71-80.

12.Ramsey PS, Schenken R. Obesity in pregnancy: complications and maternal management. Up To Date. 2019;1-40.

13.Poston L, Berghella V. Gestacional weight gain. Up To Date. 2019;1-27.

14.Gabbe SG, Niebyl JR, Simpson JL, Landon MB (eds.). Gabbe: obstetrics: normal and problem pregnancies. 6.ed. Philadephia: Saunders; 2012.

15.Morgan ES, Wilson E, Watkins T, Gao F, Hunt BJ. Maternal obesity and venous thromboembolism. Int J Obstet Anesth. 2012 Jul;21(3):253-63.

16.Weiss JL, Malon FD, Emig D, Ball RH, Nyberg DA, Comstock CH, et al. Research consortium. Obesity, obstetric complications and cesarean delivery rate: a population-based screening study. Am J Obstetric Gynecology. 2006;190:1091-7.

17.Ribeiro MC, Nakamura UM, Torloni MR, Scanavino MT, Forte BMB, Mancini PE, Mattar R. Qualidade do sono em gestantes com sobrepeso. Rev Bras Ginecol Obstet. 2015;37(8):359-65.

18.Smith MW, Marcus PS, Wurstz LD. Orthopedic issues in pregnancy. Obstet Gynecol Surv. 2008;63(2):103-11.

19.Carneiro JRI, Braga FO, Cabizuca CA, Abi-Abib RC, Cobas RA, Gomes MB. Gestação e obesidade: um problema emergente. Revista HUPE. 2014;13(3):17-24.

20.Raposo L, Ferreira C, Fernandes M, Pereira S, Moura P. Complicações da obesidade na gravidez. Versão on-line. ISSN 2183-2447. Arquivos de Medicina. Porto, Portugal.

21.Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412-7.

22.Peixoto S. Manual de assistência pré-natal. 2.ed. São Paulo: Federação Brasileira das Associações de Ginecologia e Obstetrícia (Febrasgo); 2014.

23.Knowler WC, Narayan KM, Hanson RL, Nelson RG, Bennett PH, Tuomilehto J, et al. Preventing non-insulin-dependent diabetes. Diabetes. 1995;44:483.

24.Franzago M, Fraticelli F, Stuppia L, Vitacolonna E. Nutrigenetics, epigenetics and gestational diabetes: consequences in mother and child. Epigenetics. 2019: 14(3):215-35.

25.Ribas Filho D, Suen VMM. Tratado de nutrologia. 2.ed. Barueri: Manole; 2018.

 

1.World Health Organization. Obesity and overweight. 2018. Disponível em: http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight; acessado em: 18 de agosto de 2021.

2.Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest. 2017;127(1):4-7.

3.Agustí A, García-Pardo MP, López-Almela I, Campillo I, Maes M, Romaní-Pérez M, et al. Interplay between the gut-brain axis, obesity and cognitive function. Front Neurosci. 2018 Mar;12:1-17.

4.Konturek PC, Haziri D, Brzozowski T, Hess T, Heyman S, Kwiecien S, et al. Emerging role of fecal microbiota therapy in the treatment of gastrointestinal and extra-gastrointestinal diseases. J Physiol Pharmacol. 2015;66(4):483-91.

5.Carvalho BM, Saad MJA. Influence of gut microbiota on subclinical inflammation and insulin resistance. Mediators Inflamm. 2013;2013:1-13.

6.Li X, Shimizu Y, Kimura I. Gut microbial metabolite short-chain fatty acids and obesity. Biosci Microbiota, Food Heal. 2017;36(4):135-40. Disponível em: https://www.jstage.jst.go.jp/article/bmfh/36/4/36_17-010/_article.

7.Cani PD. The gut microbiota manages host metabolism. Nat Rev Endocrinol. Nature Publishing Group; 2014;10(2):74-6. doi: 10.1038/nrendo.2013.240.

8.Lin HV, Frassetto A, Kowalik Jr EJ, Nawrocki AR, Lu MM, Kosinski JR, et al. Butyrate and propionate protect against diet-induced obesity and regulate Gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7(4).

9.Zhao L, Zhang F, Ding X, Wu G, Lam Y, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science (80-). 2018;359:1151-6.

10.Cani PD. The gut microbiota manages host metabolism. Nat Rev Endocrinol; 2013;10(2):74. doi: 10.1038/nrendo.2013.240.

11.Araújo LMB, De Viveiros AMC, Lopes RC, Porto MV, Viana A de C, Fukui RT, et al. Acanthosis nigricans em mulheres obesas de uma população miscigenada: um marcador de distúrbios metabólicos. An Bras Dermatol. 2002;77(5):537-43.

12.Gomes AC, de Sousa RGM, Botelho PB, Gomes TLN, Prada PO, Mota JF. The additional effects of a probiotic mix on abdominal adiposity and antioxidant status: a double-blind, randomized trial. Obesity. 2017;25(1):30-8.

13.Borgeraas H, Johnson LK, Skattebu J, Hertel JK, Hjelmesæth J. Effects of probiotics on body weight, body mass index, fat mass and fat percentage in subjects with overweight or obesity: a systematic review and meta-analysis of randomized controlled trials. Obes Rev. Feb;19(2):219-32.

14.Mehal WZ. The Gordian knot of dysbiosis, obesity and NAFLD. Nat Rev Gastroenterol & Hepatol. 2013 Aug;10:637. http://dx.doi.org/10.1038/nrgastro.2013.146.

15.Martel J, Ojcius DM, Chang C-J, Lin C-S, Lu C-C, Ko Y-F, et al. Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nat Rev Endocrinol. 2016 Sep;13(3):149. doi: 10.1038/nrendo.2016.142.

 

1.Kalish VB. Obesity in older adults. Prim Care. 2016 Mar;43(1):137-44.

2.Williams EP, Mesidor M, Winters K, Dubbert PM, Wyatt SB. Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr Obes Rep. 2015 Sep;4(3):363-70.

3.Ahima RS. Digging deeper into obesity. J Clin Invest. 2011 Jun;121(6):2076-9.

4.Brasil. Ministério da Saúde. Disponível em: http://portalms.saude.gov.br/noticias/agencia-saude/43604. Publicado em 18 de junho de 2018.

5.Gu YH, Bai JB, Chen XL, Wu WW, Liu XX, Tan XD. Healthy aging: a bibliometric analysis of the literature. Exp Gerontol. 2018 Dec 24:S0531-5565(18)30463-7.

6.McKee A, Morley JE. Obesity in the elderly. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, et al. (eds.). Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-2018 Oct 12.

7.Cetin DC, Nasr G. Obesity in the elderly: more complicated than you think. Cleve Clin J Med. 2014 Jan;81(1):51-61.

8.Silveira EA, Kac G, Barbosa LS. Prevalência e fatores associados à obesidade em idosos residentes em Pelotas, Rio Grande do Sul, Brasil: classificação da obesidade segundo dois pontos de corte do índice de massa corporal. Cad Saúde Pública. 2009 Jul;25(7):1569-77.

9.Darmon P. Intentional weight loss in older adults: useful or wasting disease generating strategy? Curr Opin Clin Nutr Metab Care. 2013 May;16(3):284-9.

10.Christou GA, Katsiki N, Blundell J, Fruhbeck G, Kiortsis DN. Semaglutide as a promising antiobesity drug. Obes Rev. 2019;20:805-15. doi: 10.1111/obr.12839.

11.Garcia Ramirez AV, Filho DR, Zotarelli Filho IJ. Meta-analysis and approach of the real impact of anorexigenic drugs in the obesity in humans: the last five years of the randomized studies. Curr Diabetes Rev. 2020;16(7):750-8. doi: 10.2174/1573399815666191113125247. PMID: 31729302.

12.Vinan-Vega M, Diaz Vico T, Elli EF. Bariatric surgery in the elderly patient: safety and short-time outcome: a case match analysis. Obes Surg. 2019 Mar;29(3):1007-11.

13.Haywood C, Sumithran P. Treatment of obesity in older persons: a systematic review. Obes Rev. 2019;20(4):588-98.

14.Salas FR, Chacón SA, Herrera RA, Elizondo JAM, Campos MV. Monitoring of global alerts for thirteen medicines in the period 2014-2020. GSC Biol Pharm Sci. 2020;13(2):16-34.

 

1.Sacramento HT. Fitoterapia nos serviços públicos do Brasil. In: Jornada Paulista de Plantas Medicinais, 5.; 2001, Botucatu. Anais... Botucatu: UNESP; 2000. p.28.

2.Fetrow CW, Avila JR. Manual de medicina alternativa. Rio de Janeiro: Guanabara Koogan; 2000. 743p.

3.Marques FC. Fito 2000 – Lima, Peru. Boletim da Associação Catarinense de Plantas Medicinais. 2001;2.

4.Haslam DW, James WP. Obesity. Lancet. 2005;366(9492):1197-209.

5.Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6-10.

6.Leite LD, Rocha EDM, Neto B. Obesidade: uma doença inflamatória. Revista Ciência & Saúde. 2009;2(2):85-95.

7.Tischler AB. Caracterização do perfil corporal de pacientes obesos e portadores de hipertensão arterial sistêmica admitidos em uma clínica – escola de nutrição no município de Lauro de Freitas - BA. Revista Brasileira de Obesidade, Nutrição e Emagrecimento. 2013;7(38):27-34. Disponível em: http://www.rbone.com.br/index.php/rbone/article/view/296/287; acessado em: 19 de agosto de 2021.

8.Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica. Diretrizes Brasileiras de Obesidade. 3.ed. São Paulo; 2009. Disponível em: http://www.abeso.org.br/pdf/diretrizes_brasileiras_obesidade_2009_2010_1.pdf; acessado em: 19 de fevereiro de 2016.

9.Fitoterápicos e Obesidade. Disponível em: http://www.projetodiretrizes.org.br/ans/diretrizes/48.pdf.

10.Bettega PVC, Czlusniak GR, Piva R, Namba EL, Ribas CR, Grégio AMT, Rosa EAR. Fitoterapia: dos canteiros ao balcão da farmácia. Arch Oral Res. 2011;7(1):89-97.

11.Ribas Filho D, Suen VMM. Tratado de Nutrologia. 2.ed. Barueri: Manole; 2018

12.Vieira ARR, Medeiros PRMS. A utilização de fitoterápicos no tratamento da obesidade. Revista Científica Escola Estadual Saúde Pública Goiás “Cândido Santiago”. 2019;5(1):44-57. Disponível em: https://www.revista.esap.go.gov.br/index.php/resap/article/view/111/128; acessado em: 19 de agosto de 2021.

13.Fetrow CW, Avila JR. Manual de medicina alternativa. Rio de Janeiro: Guanabara Koogan; 2000. 743p.

14.Brazilian Journal of Surgery and Clinical Research – BJSCR; 2013.

15.Pinto DCM. A Fitoterapia no tratamento da obesidade [tese]. Universidade Fernando Pessoa; 2013.

16.WON JW. Possíveis terapêuticas anti-obesidade da natureza: uma revisão. Elsevier; 2010.

17.Reolon-Costa A, Grando MF, Cravero VP. Alcachofra (Cynara cardunculus L. var. scolymus (L.) Fiori: alimento funcional e fonte de compostos promotores da saúde. Revista Fitos Eletrônica. 2017;10(4):526-38.

18.Semwal RB, Semwal DK, Vermaak I, Viljoen A. A comprehensive scientific overview of Garcinia Cambogia. Fitoterapia. 2015;102:134-48.

19.Saito M, Ueno M, Ogino S, Kubo K, Nagata J, Takeuchi M. High dose of Garcinia cambogia is effective in suppressing fat accumulation in developing male zucker obese rats, but highly toxic to the testis. Food Chem Toxicol. 2005;43(3):411-9.

20.Roy S, Rink C, Khanna S, Phillips C, Bagchi D, Bagchi M, et al. Body weight and abdominal fat gene expression profile in response to a novel hydroxycitric acid-based dietary supplement. Gene Expr. 2004;11(5-6):251-62.

21.Kovacs EMR, Westerp-Plantenga MS. Effects of (–)-hydroxycitrate on net fat synthesis as de novo lipogenesis. Physiol Behav. 2006;88:371-81.

22.Gatta B, Zuberbuehler C, Arnold M, Aubert R, Langhans W, Chapelot D. Acute effects of pharmacological modifications of fatty acid metabolism on human satiety. Br J Nutr. 2009;101(12):1867-77.

23.Rosa FMM, Machado JT. O efeito anti-obesidade da Garcinia cambogia em humanos. Revista Fitos Eletrônica. 2016;10(2):177-84.

24.Balbino EE, Murilo FD. Farmacovigilância: um passo em direção ao uso racional de plantas medicinais e fitoterápicos. Rev Bras Farmacogn. 2010;20(6):992-1000.

25.Kim MS, Kim JK, Kwon DY, Park R. Anti-adipogenic effects of Garcinia extract on the lipid droplet accumulation and the expression of transcription factor. Biofactors. 2004;22(1-4):193-6.

26.Roy S, Shah H, Rink C, Khanna S, Bagchi D, Bagchi M, et al. Transcriptome of primary adipocytes from obese women in response to a novel hydroxycitric acid-based dietary supplement. DNA Cell Biol. 2007;26(9):627-39.

27.Verbinen A, Oliveira VB. A utilização da Garcinia cambogia como coadjuvante no tratamento da obesidade. Visão Acadêmica. 2018;19(3):61-73.

28.Lalithamba. Gymnema sylvestre. Disponível em: https://commons.wikimedia.org/w/index.php?curid=26154027; acessado em: 19 de agosto de 2021.

29.Preuss HG, Bagchi D, Bagchi M, Rao CV, Dey DK, Satyanarayana S. Effects of a natural extract of (-)-hydroxycitric acid (HCA-SX) and a combination of HCA-SX plus niacin-bound chromium and Gymnema sylvestre extract on weight loss. Diabetes Obes Metab. 2004;6(3):171-80.

30.J Sci Food Agric. 2014 Mar 30;94(5):834-40.

31.Crocus sativus. Disponível em: https://commons.wikimedia.org/w/index.php?curid=473506; acessado em: 19 de agosto de 2021.

32.Mashmoul M, Azlan A, Khaza’ai H, Yusof BN, Noor SM. Saffron: a natural potent antioxidant as a promising anti-obesity drug. Antioxidants (Basel). 2013;2(4):293-308.

33.Hausenblas HA, Heekin K, Mutchie HL, Anton S. A systematic review of randomized controlled trials examining the effectiveness of saffron (Crocus sativus L.) on psychological and behavioral outcomes. J Integr Med. 2015;13(4):231-40.

34.Bennett AC, Van Camp A, López V, Smith C. Sceletium tortuosum may delay chronic disease progression via alkaloid-dependent antioxidant or anti-inflammatory action. J Physiol Biochem. 2018;74(4):539-47.

35.Sceletium tortuosum. Disponível em: https://commons.wikimedia.org/w/index.php?curid=3772389; acessado em: 19 de agosto de 2021.

36.Ilex paraguariensis. Disponível em: https://commons.wikimedia.org/w/index.php?curid=157220; acessado em: 19 de agosto de 2021.

37.Heck CI, de Mejia EG. Yerba Mate Tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations. J Food Sci. 2007;72(9):R138-51.

38.Brito, JVB, et al. Principais fitoterápicos utilizados no tratamento da obesidade, comercializados em uma farmácia de manipulação. Braz J Surg Clin Res. 2019;27(1):22-7.

39.Obesity 17 (12) pp. 2127–2133; 2009.

40.Citrus aurantium. Disponível em: https://commons.wikimedia.org/w/index.php?curid=865867; acessado em: 19 de agosto de 2021.

41.Arbo MD. Avaliação toxicológica de p-sinefrina e extrato de Citrus aurantium L. (Rutaceae) [dissertação]. Porto Alegre: UFRGS; 2008. p.107.

42.Mayer MA, Höcht C, Puyó A, Taira CA. Recent advances in obesity pharmacotherapy. Curr Clin Pharmacol. 2009;4(1):53-61.

43.Gougeon R, Harrigan K, Tremblay JF, Hedrei P, Lamarche M, Morais JA. Increase in the thermic effect of food in women by adrenergic amines extracted from citrus aurantium. Obes Res. 2005;13(7):1187-94.

44.Haaz S, Fontaine KR, Cutter G, Limdi N, Perumean-Chaney S, Allison DB. Citrus aurantium and synephrine alkaloids in the treatment of overweight and obesity: an update. Obes Rev. 2006;7(1):79-88.

45.Colker CM, Kalman DS, Torina GC, Theresa P, Chris R. Effects of Citrus aurantium extract, caffeine, and St. John’s Wort on body fat loss, lipid levels, and mood states in overweight healthy adults. Cur Ther Res. 1999;60:145-53

46.Obes Res. 2005 Jul;13(7):1187-94.

47.Sharangi AB. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) – A review. Food Res Inter. 2009;42:529-35.

48.Khan N, Mukhtar H. Tea polyphenols for health promotion. Life Sci. 2007;81(7):519-33.

49.Dreosti IE. Antioxidant polyphenols in tea, cocoa, and wine. Nutrition. 2000;16(7-8):692-4.

50.Koo MW, Cho CH. Pharmacological effects of green tea on the gastrointestinal system. Eur J Pharmacol. 2004;500(1-3):177-85.

51.Shixian Q, VanCrey B, Shi J, Kakuda Y, Jiang Y. Green tea extract thermogenesis-induced weight loss by epigallocatechin gallate inhibition of catechol-O-methyltransferase. J Med Food. 2006;9(4):451-8.

52.Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, et al. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr. 1999;70(6):1040-5.

53.Huang J, Wang Y, Xie Z, Zhou Y, Zhang Y, Wan X. The anti-obesity effects of green tea in human intervention and basic molecular studies. Eur J Clin Nutr. 2014;68(10):1075-87.

54.Disponível em: http://pt.victarbio.com/

55.McCarty MF. Nutraceutical resources for diabetes prevention-an update. Med Hypotheses. 2005;64(1):151-8.

56.Phaseolus vulgaris. Disponível em: https://commons.wikimedia.org/w/index.php?curid=265128; acessado em: 19 de agosto de 2021.

57.Andreazza GL, Anzolin C, Marques FA, Souza SO, Melo SS, Bebber VW, et al. Efeitos da faseolamina, farinhas de feijão cru e cozido no perfil nutricional e bioquímico de ratos jovens saudáveis. Nutrire. 2015;40(2). Disponível em: http://sban.cloudpainel.com.br/files/revistas_publicacoes/459.pdf; acessado em: 19 de agosto de 2021.

58.Lovato F, Kowaleski J, Silva SZ, Heldt LFS. Composição centesimal e conteúdo mineral de diferentes cultivares de feijão biorfortificado (Phaseolus vulgaris L.). Braz J Food Technol. 2018;21. Disponível em: http://www.scielo.br/pdf/bjft/v21/1981-6723-bjft-21-e2017068; acessado em: 19 de agosto de 2021.

59.Crit Rev Food Sci Nutr. 2014;54(5):580-92.

60.Celleno L, Tolaini MV, D’Amore A, Perricone NV, Preuss HG. A dietary supplement containing standardized Phaseolus vulgaris extract influences body composition of overweight men and women. Int J Med Sci. 2007;4(1):45-52.

61.Grube B, Chong WF, Chong PW, Riede L. Weight reduction and maintenance with IQP-PV-101: a 12-week randomized controlled study with a 24-week open label period. Obesity (Silver Spring). 2014 Mar;22(3):645-51.

62.Colaço PC, Degáspari CH. Benefícios da faseolamina (Phaseolus vulgaris L.) – uma revisão. Visão Acadêmica. 2014;15(1).

63.Irvingia gabonensis. Disponível em: https://commons.wikimedia.org/w/index.php?curid=47845496; acessado em: 19 de agosto de 2021.

64.Ngondi JL, Oben JE, Minka SR. The effect of Irvingia gabonensis seeds on body weight and blood lipids of obese subjects in Cameroon. Lipids Health Dis. 2005;4:12.

65.Ngondi JL, Etoundi BC, Nyangono CB, Mbofung CM, Oben JE. IGOB131, a novel seed extract of the West African plant Irvingia gabonensis, significantly reduces body weight and improves metabolic parameters in overweight humans in a randomized double-blind placebo controlled investigation. Lipids Health Dis. 2009;8:7.

66.Oben JE, Enyegue DM, Fomekong GI, Soukontoua YB, Agbor GA. The effect of Cissus quadrangularis (CQR-300) and a Cissus formulation (CORE) on obesity and obesity-induced oxidative stress. Lipids Health Dis. 2007;6:4.

67.Oben JE, Ngondi JL, Momo CN, Agbor GA, Sobgui CS. The use of a Cissus quadrangularis/Irvingia gabonensis combination in the management of weight loss: a double-blind placebo-controlled study. Lipids Health Dis. 2008;7:12.

68.Oben J, Kuate D, Agbor G, Momo C, Talla X. The use of a Cissus quadrangularis formulation in the management of weight loss and metabolic syndrome. Lipids Health Dis. 2006;5:24.

69.Nash R, Azntsa B, Kuate D. Singh H, Oben J. The use of a stem and leaf aqueous extract of Cissus quadrangularis to reduce body fat and other components of metabolic syndrome in overweight participants. J. Altern Complement Med. 2019,25(1):98-106.

70.Boix-Castejón M, Herranz-López M, Pérez Gago A, Olivares-Vicente M, Caturla N, Roche E, Micol V. Hibiscus and lemon verbena polyphenols modulate apetite-related biomarkers in overweight subjects: a randomized controlled trial. Food Funct. 2018;9(6):3173-84.

71.Phytomedicine. 2018 Jan 1;38:74-83.

72.Zalewski BM, Chmielewska A, Szajewska H, Keithley JK, Li P, Goldsby TU, et al. Correction of data errors and reanalysis of “The effect of glucomannan on body weight in overweight or obese children and adults: a systematic review of randomized controlled trials”. Nutrition. 2015;31(7-8):1056-7.

73.Rao TP. Role of guar fiber in appetite control. Physiol Behav. 2016;164(Pt A):277-83.

74.Teixeira C, Silva E, Cruz M, Navarro AC. A eficácia da chlorella como inibidor de apetite associada ao exercício físico e dieta balanceada alterando a composição corporal. RBONE. 2008;2(11).

75.Hidaka S, Okamoto Y, Arita M. A hot water extract of Chlorella pyrenoidosa reduces body weight and serum lipids in ovariectomized rats. Phytother Res. 2004;18(2):164-8.

76.Br J Nutr. 2008 May;99(5):1068-75.

77.Leung FW. Capsaicin-sensitive intestinal mucosal afferent mechanism and body fat distribution. Life Sci. 2008;83(1-2):1-5.

78.Gram DX, Hansen AJ, Wilken M, Elm T, Svendsen O, Carr RD, et al. Plasma calcitonin gene-related peptide is increased prior to obesity, and sensory nerve desensitization by capsaicin improves oral glucose tolerance in obese Zucker rats. Eur J Endocrinol. 2005;153(6):963-9.

79.Luo H, Kashiwagi A, Shibahara T, Yamada K. Decreased bodyweight without rebound and regulated lipoprotein metabolism by gymnemate in genetic multifactor syndrome animal. Mol Cell Biochem. 2007;299(1-2):93-8.

80.Luo XJ, Peng J, Li YJ. Recent advances in the study on capsaicinoids and capsinoids. Eur J Pharmacol. 2011;650(1):1-7.

81.Yazawa S, Suetome N, Okamoto K, Namiki T. Content of capsaicinoids and capsaicinoid-like substances in fruit of pepper (Capsicum annuum L.) hybrids made with “CH-19 Sweet” as a parent. J Jpn Soc Hort Sci. 1989;58:601-7.

82.Yazawa S, Yoneda H, Hosokawa M, Fushiki T, Watanabe T. Novel capsaicinoid like substances in the fruits of the non-pungent cultivar “CH-19 Sweet” of pepper (Capsicum annuum). Capsicum and Eggplant Newsletter. 2004;23:17-20.

83.Snitker S, Fujishima Y, Shen H, Ott S, Pi-Sunyer X, Furuhata Y, et al. Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications. Am J Clin Nutr. 2009;89(1):45-50.

84.Ohnuki K, Haramizu S, Oki K, Watanabe T, Yazawa S, Fushiki T. Administration of capsiate, a non-pungent capsaicin analog, promotes energy metabolism and suppresses body fat accumulation in mice. Biosci Biotechnol Biochem. 2001;65(12):2735-40.

85.Belza A, Frandsen E, Kondrup J. Body fat loss achieved by stimulation of thermogenesis by a combination of bioactive food ingredients: a placebo-controlled, double-blind 8-week intervention in obese subjects. Int J Obes (Lond). 2007;31(1):121-30.

86.Snitker S, Fujishima Y, Shen H, Ott S, Pi-Sunyer X, Furuhata Y, et al. Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications. Am J Clin Nutr. 2009;89(1):45-50.

87.Watanabe E, Kodama T, Masuyama T, Tsubuku S, Otabe A, Mochizuki M, et al. Studies of the toxicological potential of capsinoids: I. Single-dose toxicity study and genotoxicity studies of CH-19 Sweet extract. Int J Toxicol. 2008;27(Suppl 3):1-9.

88.Bernard BK, Watanabe E, Kodama T, Tsubuku S, Otabe A, Katsumata Y, et al. Studies of the toxicological potential of capsinoids: IV. Teratology studies of CH-19 Sweet extract in rats and rabbits. Int J Toxicol. 2008;27(Suppl 3):41-57.

89.Bernard BK, Tsubuku S, Kayahara T, Maeda K, Hamada M, Nakamura T, et al. Studies of the toxicological potential of capsinoids: X. Safety assessment and pharmacokinetics of capsinoids in healthy male volunteers after a single oral ingestion of CH-19 Sweet extract. Int J Toxicol. 2008;27(Suppl 3):137-47.

90.Cunha JM, Viana ESM, Souza JT, Silva SS. Os efeitos do hibisco (Hibiscus sabdariffa) no emagrecimento. Revista Científica Univiçosa. 2016;8(1).

91.Uyeda M. Hibisco e o processo de emagrecimento: uma revisão da literatura. Saúde em Foco. 2015;7.

92.Uyeda M, Ferreira BC, Correa B, Tonelotti CS, Gonçalez CR, Giacomin D, Gaborim D, Buono HCD, Leonardi JG, et al. A interferência do chá de hibisco no processo de emagrecimento em mulheres adultas da cidade de Amparo – São Paulo [monografia]. Amparo: Unifia; 2016.

93.Disponível em: http://www.pan-uk.org/files/Bissap%20health%20claims.pdf.

94.Disponível em: http://www.biomedcentral.com/content/pdf/1472-6882-10-27.pdf.

95.Disponível em: http://www.aseanbiodiversity.info/Abstract/51007368.pdf.

96.Disponível em: http://truestarhealth.com/Notes/4373005.html.

97.Disponível em: http://nopr.niscair.res.in/bitstream/123456789/3769/1/NPR%208(1)%2077-83.pdf.

98.Alonso J. Tratado de Fitofármacos y Nutracéuticos. Rosario [Argentina]: Corpus; 2004.

99.Ávila LC. Índice terapêutico fitoterápico – ITF. 2.ed. Petrópolis; 2013.

100.Cruz MGF. O uso de óleos essenciais na terapêutica. [trabalho de conclusão de curso]. Centro Universitário de Várzea Grande; 2011.

101.Lorenzi H, Matos FJA. Plantas medicinais no Brasil. Nova Odessa: Instituto Plantarum de Estudos da Flora Ltda; 2002.

102.Teske M, Trentini AMM. Compêndio de fitoterapia. 3.ed. Curitiba: Herbarium; 1997.

103.Marques DP, Santos Filho SJA, Enjiu LM, Baptista AS, Santos EA, Morais MP, et al. Nutrição e fitoterapia como auxílio no tratamento da obesidade. Revela. 2018;22.

104.Weisheimer N, Filho PFC, Neves RPC, Sousa RM, Pinto DS, Lemos VM. Fitoterapia como alternativa terapêutica no combate à obesidade. Rev Ciênc Saúde Nova Esperança. 2015;13(1):103-11.

105.Bravim FR, Santos MA, Pereira FM. Avaliação da administração de chá de raízes e folhas de alcachofra (Cynara scolymus L.) no metabolismo de ratos Wistar fêmeas. Thêma et Scientia. 2013;3(2):118-24.

106.Weisheimer N, Costa Filho PF, Neves RPC, Sousa RM, Pinto DS, Lemos VM. Fitoterapia como alternativa terapêutica no combate à obesidade. Rev Ciênc Saúde Nova Esperança. 2015;13(1).

107.Queiroz TM, Gomes CF, Alves MASG. Alcachofra (Cynara scolymus L., Asteraceae): uma fonte promissora de atividades biológicas. Revista Campo do Saber. 2015;1(2).

108.Brasil. Agência Nacional de Vigilância Sanitária. Bulas Padrão de Medicamentos Fitoterápicos.

109.Menghini L, Epifano F, Leporini L, Pagiotti R, Tirillini B. Investigação fitoquímica no extrato de folhas de Cordia salicifolia. Jornal de Comida Medicinal. 2008;11(1):193-4.

110.Brito JVB, Sousa PFN, Oliveira AMC, Cavalcante GL, Lima JVO, Carvalho FS. Principais fitoterápicos utilizados no tratamento da obesidade, comercializados em uma farmácia de manipulação. Brazilian Journal of Surgery and Clinical Research – BJSCR. 2019;.27(1):22-7.

111.Volp AC, Renhe IR, Barra K, Stringueta PC. Flavonoides antocianinas: características e propriedades na nutrição e saúde. Rev Bras Nutr Clin. 2008;23(2):141-9.

112.Boorhem RL, Lage EB. Drogas e extratos vegetais utilizados em fitoterapia. Revista Fitos Eletrônica. 2013;4(01):37-55.

113.Alonso J. Tratado de fitofármacos y nutracêuticos. Corpus; 2004.

114.Rothman RB. Treatment of obesity with “combination” pharmacotherapy. Am J Ther. 2010;17(6):596-603.

115.Shaw K, Turner J, Del Mar C. Tryptophan and 5-hydroxytryptophan for depression. Cochrane Database Syst Rev. 2002;(1):CD003198.

116.Shell W, Bullias D, Charuvastra E, May LA, Silver DS. A randomized, placebo-controlled trial of an amino acid preparation on timing and quality of sleep. Am J Ther. 2010;17(2):133-9.

117.Bula do produto Fisioton: comprimidos revestidos. Farmacêutica Responsável: Gabriela Mallmann CRF-SP no 30.138. São Paulo: Aché Laboratórios Farmacêuticos S.A.

118.Cifani C, Micioni Di Bonaventura MV, Vitale G, Ruggieri V, Ciccocioppo R, Massi M. Effect of salidroside, active principle of Rhodiola rosea extract, on binge eating. Physiol Behav. 2010;101(5): 555-62.

119.Brasil. Monografia da espécie Matricaria chamomilla L. (= Chamomilla recutita (L.) Rauschert, camomila). Brasília; Ministério da Saúde/Anvisa: 2015.

120.Mao JJ, Xie SX, Keefe JR, Soeller I, Li QS, Amsterdam JD. Long-term chamomile (Matricaria chamomilla L.) treatment for generalized anxiety disorder: A randomized clinical trial. Phytomedicine. 2016;23(14):1735-42.

121.Lima SS, Lima Filho RO, Oliveira GL. Aspectos farmacológicos da Matricaria recutita (camomila) no tratamento do transtorno de ansiedade generalizada e sintomas depressivos. Visão Acadêmica. 2019;20(2).

122.Cherniack EP. Potential applications for alternative medicine to treat obesity in an aging population. Altern Med Rev. 2008 Mar;13(1):34-42.

123.Haybar H, Javid AZ, Haghighizadeh MH, Valizadeh E, Mohaghegh SM, Mohammadzadeh A. The effects of Melissa officinalis supplementation on depression, anxiety, stress, and sleep disorder in patients with chronic stable angina. Clin Nutr ESPEN. 2018;26:47-52.

124.Bielawiec P, Harasim-Symbor E, Chabowski A. Phytocannabinoids: useful drugs for the treatment of obesity? Special focus on cannabidiol. Front Endocrinol (Lausanne). 2020;11:114.

125.Gomes JS. O uso irracional de medicamentos fitoterápicos no emagrecimento: uma revisão de literatura. Repositório Faema; 2016.

126.Verdi S, Younes S, Bertol CD. Avaliação da qualidade microbiológica de cápsulas e chás de plantas utilizadas na assistência ao tratamento da obesidade. Rev Bras Pl Med. 2013;15(4):494-502.

 

1.AlGhamdi KM. A better way to hold a Nokor needle during subcision. Dermatol Surg. 2008;34:378-9.

2.Araujo LMB, Viveiros AMC, Lopes RC, Viana AC, Fukui RT, Ursich MJM. Acanthosis nigricans em mulheres obesas de uma população miscigenada: um marcador de distúrbios metabólicos. An Bras Dermatol. 2002;77(5):537-43.

3.Balighi K, Robati RM, Moslehi H, Robati AM. Subcision in acne scar with and without subdermal implant: a clinical trial. J Eur Acad Dermatol Venereol. 2008;22:707-11.

4.Batista Filho M, Rissin A. A transição nutricional no Brasil: tendências regionais e temporais. Cad Saúde Pública. 2003;19(1):181-91.

5.Benyacoub J, Gueniche A, Bureau-Franz I, Castiel I. Probiotiques et peau. In: Roberfroid M, Coxam V, Delzenne N (Eds.). Aliments fonctionnels. 2.ed. Paris: Lavoisier; 2008.

6.Bergfeld WF. A lifetime of healthy skin: implications for women. Int J Fertil Women Med. 1999;44:83-95.

7.Borges FS. Dermato funcional: modalidades terapêuticas nas disfunções estéticas. São Paulo: Phorte; 2006.

8.Boza JC, Rech L, Sachett L, Menegon DB, Cestari TF. Manifestações dermatológicas da obesidade. Rev HCPA. 2010;30(1):55-62.

9.Boza JC. Prevalência e caracterização de dermatoses em pacientes obesos: estudo comparativo da obesidade. Dissertação de mestrado, 2011. Rev HCPA. 2010;30(1):55-62.

10.Boza JC, Rech L, Sachett L, Menegon DB, Cestari TF. Skin manifestations of obesity. Rev HCPA. 2010;30(1):55-62.

11.Cavalcante FH, Talhari S, Ferreira LCL, Andrade RV. Elastose focal linear. An Bras Dermatol. 2007.

12.Chen W, Obermayer-Pietsch B, Hong JB, Melnik BC, Yamasaki O, Dessinioti C, et al. Acne-associated syndromes: models for better understanding of acne pathogenesis. J Eur Acad Dermatol Venereol. 2011;25(6):637-46.

13.Cucé LC, Neto CF. Manual de dermatologia. 2.ed. São Paulo: Atheneu; 2001.

14.De Campos JR, Wolosker N, Takeda FR, Kauffman P, Kuzniec S, Jatene FB, et al. The body mass index and level of resection: predictive factors for compensatory sweating after sympathectomy. Clin Auton Res. 2005;15(2):116-20.

15.De la Casa Almeida M, Suarez Serrano C, Rebollo Roldán J, Jiménez Rejano JJ. Cellulite’s aetiology: a review. J Eur Acad Dermatol Venereol. 2013;27(3):273-8.

16.Euvrad S, Kanitakis J, Cochat P, Cambazard F, Claudy A. Skin diseases in children with organ transplants. J Am Acad Dermatol. 2001;44(6):932-9.

17.Fisberg M. Atualização em obesidade na infância e adolescência. São Paulo: Atheneu; 2005.

18.Francischelli Neto M. A celulite. 2007. Disponível em: http://www.naturale.med.br/celulite.thm. Acessado em: 14 de abril de 2010.

19.Garcia O, Schafer M. The effects of nonfocused external ultrasound on tissue temperature and adipocyte morphology. Aesthet Surg. 2013;33(1):117-27.

20.Godoy JMP, Godoy MFG. Celulite, do diagnóstico ao tratamento. São Paulo: Riocor; 2003.

21.Goldman L, Bennett JC. Cecil: tratado de medicina interna. 21.ed. Rio de Janeiro: Guanabara Koogan; 2001.

22.Gonzalez-Suarez A, Gutierrez-Herrera E, Berjano E, Jimenez Lozano JN, Franco W. Thermal and elastic response of subcutaneous tissue with different fibrous septa architectures to RF heating: numerical study. Lasers Surg Med. 2015;47:183-95.

23.Guirro E, Guirro R. Fisioterapia dermato-funcional: fundamentos, recursos e patologias. 3.ed. Barueri: Manole; 2002.

24.Guirro E, Guirro R. Fisioterapia dermato-funcional: fundamentos, recursos e patologias. 3.ed. rev. e ampl. Barueri: Manole; 2004.

25.Haider A, Solish N. Focal hyperhidrosis: diagnosis and management. CMAJ. 2005;172(1):69-75.

26.Hexsel DM, Mazzuco R. Subcision: uma alternativa cirúrgica para a lipodistrofia ginóide (celulite) e outras alterações no relevo corporal. An Bras Dermatol. 1997;77:27-32.

27.Hexsel DM, Mazzuco R. Subcision: a treatment for celulite. Int J Dermatol. 2000;39:539-44.

28.Huang W, Foster JA, Rogachefsky AS. Pharmacology of botulinum toxin. J Am Acad Dermatol. 2000;43(2 Pt 1):249-59.

29.Isomaa B, Henricsson M, Almgren P, Tuomi T, Taskinen MR, Groop L. The metabolic syndrome influences the risk of chronic complications in patients with type II diabetes. Diabetologia. 2001;44(9):1148-54.

30.Jabbour SA. Cutaneous manifestations of endocrine disorders: a guide for dermatologists. Am J Clin Dermatol. 2003;4:315-31.

31.James PT, Leach R, Kalamara E, Shayeghi M. The worldwide obesity epidemic. Obes Res. 2001;9(Suppl 4):228S-233S.

32.Jewell ML, Baxter RA, Cox SE, Donofrio LM, Dover JS, Glogau RG, et al. Randomized sham-controlled trial to evaluate the safety and effectiveness of a high-intensity focused ultrasound device for noninvasive body contouring. Plast Reconstruct Surg. 2011;128:253-62.

33.Kede MPV, Sabatovich O. Dermatologia estética. São Paulo: Atheneu; 2004.

34.Kennedy JE, ter Haar GR, Cranston D. High intensity focused ultrasound: surgery of the future? Br J Radiol. 2003;76:590-9.

35.Kim JH, Yoo SJ, Oh DK, Kweon YG, Park DW, Lee CH, et al. Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid. Enzyme Microb Technol. 1996;19(6):440-5.

36.Kinkelin I, Hund M, Naumann M, Hamm H. Effective treatment of frontal hyperhidrosis with botulinum toxin A. Br J Dermatol. 2000;143(4):824-7.

37.Kurz I. Textbook of Dr. Vodder’s Manual Lymph Drainage. Heidelberg: Haug Verlag; 1997.

38.Lee JH, Lee EK, Kim CW, Kim TY. A case of edematous striae distensae in lupus nephritis. J Dermatol. 1999;26(2):122-4.

39.Lee SE, Kim JH, Lee SJ, Lee JE, Kang JM, Kim YK, et al. Treatment of striae distensae using an ablative 10,600-nm carbon dioxide fractional laser: a retrospective review of 27 participants. Dermatol Surg. 2010;36:1683-90.

40.Legrand J, Bartoletti C, Pinto R. Manual Prático de Medicina Estética. Buenos Aires: Camaronês; 1999.

41.Li ZJ, Park SB, Sohn KC, Lee Y, Seo YJ, Kim CD, et al. Regulation of lipid production by acetylcholine signalling in human sebaceous glands. J Dermatol Sci. 2013;72(2):116-22.

42.Lima EVA, Lima MA, Takano D. Microagulhamento: estudo experimental e classificação da injúria provocada. Surg Cosmet Dermatol. 2013;5(2):110-4.

43.Lima EPF. Rodrigues GB. Russian stimulation in strengthening abdominal muscle. ABCD Arq Bras Cir Dig. 2012;25(2):125-8.

44.Lima KS, Press L. O uso da microgalvanopuntura no tratamento de estrias atróficas. Passo Fundo: UPS; 2005.

45.Liu DTY. Striae gravidarum. Lancet 1974;1(7858):625.

46.Lokhande AJ, Mysore V. Striae distensae treatment review and update. Indian Dermatol Online J. 2019;10(4):380-95.

47.Lovell CR. Acquired disorders of dermal connective tissue – Striae. In: Griffiths C, Barker J, Bleiker T, Chalmers R, Creamer D (Eds.). Rook’s Textbook of Dermatology. 9.ed. Chichester: Wiley; 2016. p.96.9-10.

48.Macedo OR, Bussade M, Salgado A, Ribeiro MM. Fractional photothermolysis for the treatment of striae distensae. J Am Acad Dermatol. 2007;56:AB204.

49.Mammucari M. Mesotherapy, definition, rational and clinical role: a consensus report from the Italian Society of Mesotherapy. Eur Rev Med Pharmacol Sci. 2011;15(6):682-94.

50.Mendonça RSC, Rodrigues GBO. Major dermatological changes in obese patients. ABCD Arq Bras Cir Dig. 2011;24(1):68-73.

51.Mondo PKS, Rosas RF. Efeitos da corrente galvânica no tratamento das estrias atróficas [trabalho de conclusão de curso] Santa Catarina: Universidade do Sul de Santa Catarina; 2004.

52.Moraes AM, Sampaio SAP, Sotto MN, Golcman B. Previsão das cicatrizes atróficas por meio da distensibilidade cutânea. An Bras Dermatol. 2000;75:447-56.

53.Negrato CA. Obesidade, um problema de saúde pública. Racine. 2003;18-33.

54.Nouri K, Romagosa R, Chartier T, Bowes L, Spencer JM. Comparison of the 585 nm pulse dye laser and the short pulsed CO2 laser in the treatment of striae distensae in skin types IV and VI. Dermatol Surg. 1999;25:368-70

55.Omi T, Numano K. The role of the CO2 laser and fractional CO2 laser in Dermatology. Laser Ther. 2014 23(1):49-60.

56.Orentreich DS, Orentreich N. Subcutaneuos incisionless (subcision) surgery for correction of depressed scars and wrinkles. Dermatol Surg. 1995;21:543-9.

57.Paschoal LHC, Cunha MG, Ciporkin H. Fisiopatologia e atualização terapêutica da lipodistrofia ginóide – Celulite. 2.ed. rev. e ampl. Rio de Janeiro: DiLivros: 2012.

58.Pinheiro DB. Império do bisturi. Veja on line. 2001.

59.Pistor M. What is mesotherapy? Chir Dent Fr. 1976;46(288):59-60.

60.Proebstle TM. Cellulite. Hautarzt. 2010;61(10):864-72.

61.Rabello FE. Nomenclatura dermatológica. An Bras Dermatol Sif. 1952;30:65-194.

62.Reis GMD, Guerra ACS, Ferreira JPA. Estudo de pacientes com hiperidrose, tratados com toxina botulínica: análise retrospectiva de 10 anos. Rev Bras Cir Plást. 2011;26(4):582-90.

63.Rogalski C, Hautein UF, Glander HJ, Paasch U. Extensive striae distensae as a result of topical corticosteroid therapy in psoriasis vulgaris. Acta Derm Venereol. 2003;83:54-5.

64.Rohrich RJ, Janis JE, Fagien S, Stuzin JM. The cosmetic use of botulinum toxin. Plast Reconstr Surg. 2003;112(5 Suppl):177S-88S.

65.Rossi AB, Vergnanini AL. Cellulite: a review. J Eur Acad Dermatol Venereol. 2000;14:251-62.

66.Rossi MH. Celulite. J Eur Acad Dermatol Venereol. 2001;14(4):251-5.

67.Sampaio SAP, Riviti EA. Dermatologia. São Paulo: Artes Médicas; 2008.

68.Santos CM, Simões NP. Tratamento estético da estria através da microgalvanopuntura. FisioBrasil Atualização Científica. 2003;62:15-7.

69.Schwartz RA. Acanthosis nigricans. J Am Acad Dermatol. 1994;31:1-19.

70.Scorza F, Borges F. Carboxiterapia: uma revisão. Revista Fisioterapia Ser. 2008;3(4).

71.Sigulem DM. Crescimento pôndero-estatural do pré-escolar. Compacta Nutrição. 2005;6(1):1-27.

72.Tamega AA, Aranha AMP, Guiotoku MM, Miot LDB, Miot HA. Associação entre acrocórdons e resistência à insulina. An Bras Dermatol. 2010;85(1).

73.Tennstedt D, Lachapelle J. Effets cutanés indésirables de la mésotherapie. Ann Dermatol Venereol. 1997;124(2):192-6.

74.Ter Haar GR. Therapeutic ultrasound. Eur J Ultrasound. 1999;9:3-9.

75.Tu YR, Li X, Lin M, Lai FC, Li YP, Chen JF, et al. Epidemiological survey of primary palmar hyperhidrosis in adolescent in Fuzhou of People’s Republic of China. Eur J Cardiothorac Surg. 2007;31(4):737-9.

76.Vedamurthy M. Mesotherapy. Indiam J Dermatol Venereol Leprol. 2007;73:60-2.

77.Yang YJ, Lee GY. Treatment of Striae distensae with nonablative fractional laser versus ablative CO2 fractional laser: a randomized controlled trial. Ann Dermatol. 2011;23:481-9.

78.Yosipovitch G, DeVore A, Dawn A. Obesity and the skin: skin physiology and skin manifestations of obesity. J Am Acad Dermatol. 2007;56:901-16.

79.Ribas Filho D, Suen VMM. Tratado de Nutrologia. 2.ed. Barueri: Manole; 2018.

80.Campos VB, Gontijo G. Fractional CO2 laser: a personal experience. Surgical and Cosmetic Dermatology. 2010;2(4):326-32.

 

1.Ministério da Saúde. Vigitel Brasil 2017: vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico: estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados. Brasília: Ministério da Saúde; 2018.

2.Almeida CAN, Mello ED. Obesidade. In: Nutrologia pediátrica. Prática baseada em evidências. Barueri: Manole: 2016. p.135-56.

3.Aiello AM, Marques de Mello L, Souza Nunes M, Soares da Silva A, Nunes A. Prevalence of obesity in children and adolescents in Brazil: a meta-analysis of cross-sectional studies. Curr Pediatr Rev. 2015;11(1):36-42.

4.GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053): 1659-724.

5.The Global BMI Mortality Collaboration. Body-mass index and all-cause mortality: Individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet (Lond. Engl.). 2016;388:776-86.

6.Ribas Filho D, Suen VMM. Tratado de Nutrologia. 2.ed. Barueri: Manole; 2018.

7.Instituto Brasileiro de Geografia e Estatística. Pesquisa de orçamentos familiares 2017-2018: análise do consumo alimentar pessoal no Brasil/IBGE, Coordenação de Trabalho e Rendimento. Rio de Janeiro: IBGE; 2020.

8.Micha R, Peñalvo JL, Cudhea F, Imamura F, Rehm CD, Mozaffarian D. Association Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. JAMA. 2017;317(9):912-24.

9.Spencer EA, Appleby PN, Davey GK, Key Tj. Diet and body mass index in 38000 EPIC- Oxford meat-eaters, fish-eaters, vegetarians and vegans. Int J Obes Relat Metab Disord. 2003;27(6):728-34.

10.Sabaté J, Wien M. Vegetarian diets and childhood obesity prevention. Am J Clin Nutr. 2010;91 (suppl):1525S-9S.

11.Key TJ, Fraser GE, Thorogood M, Appleby PN, Beral V, Reeves G, et al. Mortality in vegetarians and non-vegetarians: a collaborative analysis of 8300 deaths among 76,000 men and women in five prospective studies. Public Health Nutr. 1998;1:33-41.

12.Berkow S, Barnard ND. Vegetarian diets and weight status. Nutr Rev. 2006;64(4):175-88.

13.Rosell M, Appleby P, Spencer E, et al. Weight gain over 5 years in 21,966 meat-eating, fish-eating, vegetarian, and vegan men and women in EPIC-Oxford. Int J Obes (Lond). 2006;30(9):1389-96.

14.Newby PK, Tucker KL, Wolk A. Risk of overweight and obesity among semivegetarian, lactovegetarian, and vegan women. Am J Clin Nutr. 2005;81:1267-74.

15.Barnard ND, Levin SM, Yokoyama Y. A systematic review and meta-analysis of changes in body weight in clinical trials of vegetarian diets. J Acad Nutr Diet. 2015;115(6):954-69.

16.Nicholson AS, Sklar M, Barnard ND, Gore S, Sullivan R, Browning S. Toward improved management of NIDDM: a randomized, controlled, pilot intervention using a lowfat, vegetarian diet. Prev Med. 1999;29(2):87-91.

17.Toumpanakis A, Turnbull T, Alba-Barba I. Effectiveness of plant-based diets in promoting well-being in the management of type 2 diabetes: a systematic review. BMJ Open Diabetes Research and Care. 2018;6:e00053.

18.Huang RY, Huang CC, Hu FB, Chavarro JE. Vegetarian diets and weight reduction: A meta-analysis of randomized controlled trials. J Gen Intern Med. 2015;31(1):109-16.

19.Melina V, Craig W, Levin S. Position of the Academy of Nutrition and Dietetics: vegetarian diets. J Acad Nutr Diet. 2016;116(12):1970-80.

20.Herrmann W, Geisel J. Vegetarian lifestyle and monitoring of vitamin B-12 status. Clin Chim Acta. 2002;326(1-2):47-59.

21.Allen LH. Folate and vitamin B12 status in the Americas. Nutr Rev. 2004;62(6 Pt 2):S29-33; discussion S34.

22.Barnabé A, Aléssio AC, Bittar LF, de Moraes Mazetto B, Bicudo AM, de Paula EV, et al. Folate, vitamin B12 and Homocysteine status in the post-folic acid fortification era in different subgroups of the Brazilian population attended to at a public health care center. Nutr J. 2015;14:19.

23.Silva LL, Fawzi WW, Cardoso MA; ENFAC Working Group. Serum folate and vitamin B12 status in young Brazilian children. Public Health Nutr. 2019;22(7):1223-31.

24.Jenkins DJA, Kendall CWC, Marchie A, Faulkner DA, Wong JM, de Souza R, et al. Effects of a dietary portfolio of cholesterol-lowering foods vs lovastatin on serum lipids and C-reactive protein. JAMA. 2003;290(4):502-10.

25.Turner-McGrievy G, Mandes T, Crimarco A. A plant-based diet for overweight and obesity prevention and treatment. J Geriatr Cardiol. 2017;14(5):369-74.

26.Kahleova H, Levin S, Barnard N. Cardio-metabolic benefits of plant-based diets. Nutrients. 2017;9(8):848.

27.Tonstad S, Butler T, Yan R, Fraser GE. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care. 2009;32(5):791-6.

28.Moore WJ, McGrievy ME, Turner-McGrievy GM. Dietary adherence and acceptability of five different diets, including vegan and vegetarian diets, for weight loss: The New DIETs study. Eat Behav. 2015;19:33-8.

29.Newby PK, Tucker K L, Wolk A. Risk of overweight and obesity among semivegetarian, lactovegetarian, and vegan women. Am J Clin Nutr. 2005;81(6):1267-74.

30.Chiu YF, Hsu CC, Chiu TH, Lee CY, Liu TT, Tsao CK, et al. Cross-sectional and longitudinal comparisons of metabolic profiles between vegetarian and non-vegetarian subjects: a matched cohort study. Br J Nutr. 2015;114(8):1313-20.

31.Wright N, Wilson L, Smith M, Duncan B, McHugh P. The BROAD study: A randomised controlled trial using a whole food plant-based diet in the community for obesity, ischaemic heart disease or diabetes. Nutr Diabetes. 2017;7(3):e256.

32.Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JE, Willett WC, et al. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr. 2011;94:1088-96.

33.Barnard N, Levin S, Trapp C. Meat consumption as a risk factor for type 2 diabetes. Nutrients. 2014;6:897-910.

34.Tian S, Xu Q, Jiang R, Han T, Sun C, Na L. Dietary protein consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Nutrients. 2017;9(9).

35.Viguiliouk E, Kendall CW, Kahleová H, Rahelić D, Salas-Salvadó J, Choo VL, et al. Effect of vegetarian dietary patterns on cardiometabolic risk factors in diabetes: a systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2019;38(3):1133-45.

36.Disponível em: https://idf.org/aboutdiabetes/type-2-diabetes.htm; acesso em 10 out. 2020.

37.Yokoyama Y, Barnard ND, Levin SM, Watanabe M. Vegetarian diets and glycemic control in diabetes: a systematic review and meta-analysis. Cardiovasc Diagn Ther. 2014;4(5):373-82.

38.Kahleova H, Matoulek M, Malinska H, Oliyarnik O, Kazdova L, Neskudla T, et al. Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with type 2 diabetes. Diabet Med. 2011;28(5):549-5.

39.Tonstad S, Stewart K, Oda K, Batech M, Herring RP, Fraser GE. Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutr Metab Cardiovasc Dis. 2013;23(4):292-9.

40.Storz MA. Reduced diabetes medication needs with a plant-based diet. J Am Coll Nutr. 2020;39(6):574-7.

41.Kim Y, Keogh J, Clifton P. A review of potential metabolic etiologies of the observed association between red meat consumption and development of type 2 diabetes. Metabolism. 2015;64(7):768-79.

42.Bendinelli B, Palli D, Masala G, Sharp SJ, Schulze MB, Guevara M, et al. Association between diet and type 2 diabetes: EPIC-InterAct study. Diabetologia. 2013;56:47-59.

43.Satija A, Bhupathiraju SN, Rimm EB, Spiegelman D, Chiuve SE, Borgi L, et al. Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: results from three prospective cohort studies. PLoS Med. 2016;13(6):e1002039.

44.GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958-72.

45.Modelli ME, Cherulli AS, Gandolfi L, Pratesi R. Atherosclerosis in young Brazilians suffering violent deaths: a pathological study. BMC Res Notes. 2011;4:531.

46.Crowe FL, Appleby PN, Travis RC, Key TJ. Risk of hospitalization or death from ischemic heart disease among British vegetarians and nonvegetarians: results from the EPIC-Oxford cohort study. Am J Clin Nutr. 2013;97(3):597-603.

47.Huang T, Yang B, Zheng J, Li G, Wahlqvist ML, Li D. Cardiovascular disease mortality and cancer incidence in vegetarians: a meta-analysis and systematic review. Ann Nutr Metab. 2012;60(4):233-40.

48.Morin É, Michaud-Létourneau I, Couturier Y, Roy M. A whole-food, plant-based nutrition program: Evaluation of cardiovascular outcomes and exploration of food choices determinants. Nutrition. 2019;66:54-61.

49.Sacks FM, Lichtenstein AH, Wu JHY, Appel LJ, Creager MA, Kris-Etherton PM, et al.; American Heart Association. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation. 2017;136(3):e1-e23.

50.Yokoyama Y, Nishimura K, Barnard ND, Takegami M, Watanabe M, Sekikawa A, et al. Vegetarian diets and blood pressure: a meta-analysis. JAMA Intern Med. 2014;174(4):577-87.

51.Mattos CB, Viana LV, Paula TP, Sarmento RA, Almeida JC, Gross JL, Azevedo MJ. Increased protein intake is associated with uncontrolled blood pressure by 24-hour ambulatory blood pressure monitoring in patients with type 2 diabetes. J Am Coll Nutr. 2015;34(3):232-9.

52.McDougall J, Thomas LE, McDougall C, Moloney G, Saul B, Finnell JS, et al. Effects of 7 days on an ad libitum low-fat vegan diet: the McDougall Program cohort. Nutr J. 2014;13:99.

53.Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol. 2019; 16(3):137-54.

54.Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576-85.

55.Kahleova H, Rembert E, Alwarith J, Yonas WN, Tura A, Holubkov R, et al. Effects of a low-fat vegan diet on gut microbiota in overweight individuals and relationships with body weight, body composition, and insulin sensitivity. a randomized clinical trial. Nutrients. 2020;12(10):E2917.

56.Tomova A, Bukovsky I, Rembert E, Yonas W, Alwarith J, Barnard ND, et al. The effects of vegetarian and vegan diets on gut microbiota. Front Nutr. 2019;6:47.

57.Aoun A, Darwish F, Hamod N. The influence of the gut microbiome on obesity in adults and the role of probiotics, prebiotics, and synbiotics for weight loss. Prev Nutr Food Sci. 2020;25(2):113-23.

58.Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576-85.

59.Miller CA, Corbin KD, da Costa KA, Zhang S, Zhao X, Galanko JA, et al. Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose-response study. Am J Clin Nutr. 2014;100(3):778-86.

60.Dahl WJ, Stewart ML. Position of the Academy of Nutrition and Dietetics: health implications of dietary fiber. J Acad Nutr Diet. 2015;115(11):1861-70.

61.Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. 2019;393(10170):434-45.

62.Craig WJ. Health-promoting phytochemicals: beyond the traditional nutrientes. In: Sabaté J (Ed.). Vegetarian Nutrition. Boca Raton: CRC Series in Modern Nutrition. Boca Raton: 2001. p.333-70.

63.Viguiliouk E, Stewart SE, Jayalath VH, Ng AP, Mirrahimi A, de Souza RJ, et al. Effect of replacing animal protein with plant protein on glycemic control in diabetes: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2015;7(12):9804-24.

64.Weihrauch-Blüher S, Wiegand S. Risk factors and implications of childhood obesity. Curr Obes Rep. 2018;7(4):254-9.

65.Amit M. Vegetarian diets in children and adolescents. Paediatr Child Health. 2010;15(5):303-14.

66.Nutritional aspects of vegetarian diets American Academy of Pediatrics. In: Kleinman RE, Greer FR (Eds.). Pediatric Nutrition. 7.ed. Elk Groove Village: American Academy of Pediatrics; 2014. p.241-64.

1.Jaacks LM, Vandevijvere S, Pan A, McGowan CJ, Wallace C, Imamura F, et al. The obesity transition: stages of the global epidemic. Lancet Diabetes Endocrinol. 2019;7(3):231-40.

2.Neal JE. Childhood obesity and sleep disturbances. NASN Sch Nurse. 2015;30(6):322-4.

3.Schneider H, Smith PL. Obesity and obstructive sleep apnea: pathogenic mechanisms and therapeutic approaches. Proc Am Thorac Soc. 2008;5(2):185-92.

4.Dhurandhar NV. A framework for identification of infections that contribute to human obesity. Lancet Infect Dis. 2011;11(12):963-9.

5.Dhurandhar NV. Is obesity caused by an adenovirus? Expert Rev Anti Infect Ther. 2012;10(5):521-4.

6.Ribas Filho D, Suen VMM. Tratado de Nutrologia. 2.ed. Barueri: Manole; 2018.

7.Mancuso P. Obesity and lung inflammation. J Appl Physiol (1985). 2010;108(3):722-8.

8.Mancuso P, Gottschalk A, Phare SM, Peters-Golden M, Lukacs NW, Huffnagle GB. Leptin-deficient mice exhibit impaired host defense in Gram-negative pneumonia. J Immunol. 2002;168(8):4018-24.

9.Hsu A, Aronoff DM, Phipps J, Goel D, Mancuso P. Leptin improves pulmonary bacterial clearance and survival in ob/ob mice during pneumococcal pneumonia. Clin Exp Immunol. 2007;150(2):332-9.

10.Wieland CW, Florquin S, Chan ED, Leemans JC, Weijer S, Verbon A, et al. Pulmonary Mycobacterium tuberculosis infection in leptin-deficient ob/ob mice. Int Immunol. 2005;17(11):1399-408.

11.Ordway D, Henao-Tamayo M, Smith E, Shanley C, Harton M, Troudt J, et al. Animal model of Mycobacterium abscessus lung infection. J Leukoc Biol. 2008;83(6):1502-11.

12.Park S, Rich J, Hanses F, Lee JC. Defects in innate immunity predispose C57BL/6J-Leprdb/Leprdb mice to infection by Staphylococcus aureus. Infect Immun. 2009;77(3):1008-14.

13.Ikejima S, Sasaki S, Sashinami H, Mori F, Ogawa Y, Nakamura T, et al. Impairment of host resistance to Listeria monocytogenes infection in liver of db/db and ob/ob mice. Diabetes. 2005;54(1):182-9.

14.Smith AG, Sheridan PA, Harp JB, Beck MA. Diet-induced obese mice have increased mortality and altered immune responses when infected with influenza virus. J Nutr. 2007;137(5):1236-43.

15.Smith AG, Sheridan PA, Tseng RJ, Sheridan JF, Beck MA. Selective impairment in dendritic cell function and altered antigen-specific CD8+ T-cell responses in diet-induced obese mice infected with influenza virus. Immunology. 2009;126(2):268-79.

16.Karlsson EA, Sheridan PA, Beck MA. Diet-induced obesity impairs the T cell memory response to influenza virus infection. J Immunol. 2010;184(6):3127-33.

17.Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell. 1997;88(1):131-41.

18.Kennedy AJ, Ellacott KL, King VL, Hasty AH. Mouse models of the metabolic syndrome. Dis Model Mech. 2010;3(3-4):156-66.

19.Dossett LA, Dageforde LA, Swenson BR, Metzger R, Bonatti H, Sawyer RG, et al. Obesity and site-specific nosocomial infection risk in the intensive care unit. Surg Infect (Larchmt). 2009;10(2):137-42.

20.Ylöstalo P, Suominen-Taipale L, Reunanen A, Knuuttila M. Association between body weight and periodontal infection. J Clin Periodontol. 2008;35(4):297-304.

21.Jedrychowski W, Maugeri U, Flak E, Mroz E, Bianchi I. Predisposition to acute respiratory infections among overweight preadolescent children: an epidemiologic study in Poland. Public Health. 1998;112(3):189-95.

22.Davenport DL, Xenos ES, Hosokawa P, Radford J, Henderson WG, Endean ED. The influence of body mass index obesity status on vascular surgery 30-day morbidity and mortality. J Vasc Surg. 2009;49(1):140-7, 147.e1; discussion 147.

23.Olsen MA, Nepple JJ, Riew KD, Lenke LG, Bridwell KH, Mayfield J, et al. Risk factors for surgical site infection following orthopaedic spinal operations. J Bone Joint Surg Am. 2008;90(1):62-9.

24.Potapov EV, Loebe M, Anker S, Stein J, Bondy S, Nasseri BA, et al. Impact of body mass index on outcome in patients after coronary artery bypass grafting with and without valve surgery. Eur Heart J. 2003;24(21):1933-41.

25.Swenne CL, Lindholm C, Borowiec J, Carlsson M. Surgical-site infections within 60 days of coronary artery by-pass graft surgery. J Hosp Infect. 2004;57(1):14-24.

26.Jain S, Chaves SS. Obesity and influenza. Clin Infect Dis. 2011;53(5):422-4.

27.Kwong JC, Campitelli MA, Rosella LC. Obesity and respiratory hospitalizations during influenza seasons in Ontario, Canada: a cohort study. Clin Infect Dis. 2011;53(5):413-21.

28.Akiyama N, Segawa T, Ida H, Mezawa H, Noya M, Tamez S, et al. Bimodal effects of obesity ratio on disease duration of respiratory syncytial virus infection in children. Allergol Int. 2011;60(3):305-8.

29.Bode B, Garrett V, Messler J, McFarland R, Crowe J, Booth R, et al. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. J Diabetes Sci Technol. 2020;14(4):813-21.

30.Pasarica M, Dhurandhar NV. Infectobesity: obesity of infectious origin. Adv Food Nutr Res. 2007;52:61-102.

31.Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761-72.

32.Li DK, Chen H, Ferber J, Odouli R. Infection and antibiotic use in infancy and risk of childhood obesity: a longitudinal birth cohort study. Lancet Diabetes Endocrinol. 2017;5(1):18-25.

33.Dart AM, Martin JL, Kay S. Association between past infection with Chlamydia pneumoniae and body mass index, low-density lipoprotein particle size and fasting insulin. Int J Obes Relat Metab Disord. 2002;26(4):464-8.

34.Goodson JM, Groppo D, Halem S, Carpino E. Is obesity an oral bacterial disease? J Dent Res. 2009;88(6):519-23.

35.Arslan E, Atilgan H, Yavaşoğlu I. The prevalence of Helicobacter pylori in obese subjects. Eur J Intern Med. 2009;20(7):695-7.

36.Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022-3.

37.Fernández-Real JM, Ferri MJ, Vendrell J, Ricart W. Burden of infection and fat mass in healthy middle-aged men. Obesity (Silver Spring). 2007;15(1):245-52.

38.Lynch JP 3rd, Fishbein M, Echavarria M. Adenovirus. Semin Respir Crit Care Med. 2011;32(4):494-511.

39.Mast TC, Kierstead L, Gupta SB, Nikas AA, Kallas EG, Novitsky V, et al. International epidemiology of human pre-existing adenovirus (Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: correlates of high Ad5 titers and implications for potential HIV vaccine trials. Vaccine. 2010;28(4):950-7.

40.Barouch DH, Kik SV, Weverling GJ, Dilan R, King SL, Maxfield LF, et al. International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations. Vaccine. 2011;29(32):5203-9.

41.Dhurandhar N, Kulkarni P, Ajinkya SM, Sherikar A. Avian adenovirus leading to pathognomonic obesity in chicken. J. Bom Vet College. 1990;2:131-2.

42.Dhurandhar NV, Kulkarni P, Ajinkya SM, Sherikar A. Effect of adenovirus infection on adiposity in chicken. Vet Microbiol. 1992;31(2-3):101-7.

43.Dhurandhar NV, Kulkarni PR, Ajinkya SM, Sherikar AA, Atkinson RL. Association of adenovirus infection with human obesity. Obes Res. 1997;5(5):464-9.

44.Wigand R. Age and susceptibility of Swiss mice for mouse adenovirus, strain FL. Arch Virol. 1980;64(4):349-57.

45.Dhurandhar NV. Infections and body weight: an emerging relationship? Int J Obes Relat Metab Disord. 2002;26(6):745-6.

46.Dhurandhar NV, Israel BA, Kolesar JM, Mayhew G, Cook ME, Atkinson RL. Transmissibility of adenovirus-induced adiposity in a chicken model. Int J Obes Relat Metab Disord. 2001;25(7):990-6.

47.Dhurandhar NV, Israel BA, Kolesar JM, Mayhew GF, Cook ME, Atkinson RL. Increased adiposity in animals due to a human virus. Int J Obes Relat Metab Disord. 2000;24(8):989-96.

48.Pasarica M, Shin AC, Yu M, Ou Yang HM, Rathod M, Jen KL, et al. Human adenovirus 36 induces adiposity, increases insulin sensitivity, and alters hypothalamic monoamines in rats. Obesity (Silver Spring). 2006;14(11):1905-13.

49.Dhurandhar NV, Whigham LD, Abbott DH, Schultz-Darken NJ, Israel BA, Bradley SM, et al. Human adenovirus Ad-36 promotes weight gain in male rhesus and marmoset monkeys. J Nutr. 2002;132(10):3155-60.

50.Na HN, Nam JH. Adenovirus 36 as an obesity agent maintains the obesity state by increasing MCP-1 and inducing inflammation. J Infect Dis. 2012;205(6):914-22.

51.Akheruzzaman M, Hegde V, Dhurandhar NV. Twenty-five years of research about adipogenic adenoviruses: A systematic review. Obes Rev. 2019;20(4):499-509.

52.Whigham LD, Israel BA, Atkinson RL. Adipogenic potential of multiple human adenoviruses in vivo and in vitro in animals. Am J Physiol Regul Integr Comp Physiol. 2006;290(1):R190-4.

53.So PW, Herlihy AH, Bell JD. Adiposity induced by adenovirus 5 inoculation. Int J Obes (Lond). 2005;29(6):603-6.

54.Pasarica M, Loiler S, Dhurandhar NV. Acute effect of infection by adipogenic human adenovirus Ad36. Arch Virol. 2008;153(11):2097-102.

55.Vangipuram SD, Sheele J, Atkinson RL, Holland TC, Dhurandhar NV. A human adenovirus enhances preadipocyte differentiation. Obes Res. 2004;12(5):770-7.

56.Atkinson RL, Dhurandhar NV, Allison DB, Bowen RL, Israel BA, Albu JB, et al. Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids. Int J Obes (Lond). 2005;29(3):281-6.

57.Vangipuram SD, Yu M, Tian J, Stanhope KL, Pasarica M, Havel PJ, et al. Adipogenic human adenovirus-36 reduces leptin expression and secretion and increases glucose uptake by fat cells. Int J Obes (Lond). 2007;31(1):87-96.

58.Rogers PM, Fusinski KA, Rathod MA, Loiler SA, Pasarica M, Shaw MK, et al. Human adenovirus Ad-36 induces adipogenesis via its E4 orf-1 gene. Int J Obes (Lond). 2008;32(3):397-406.

59.Rogers PM, Mashtalir N, Rathod MA, Dubuisson O, Wang Z, Dasuri K, et al. Metabolically favorable remodeling of human adipose tissue by human adenovirus type 36. Diabetes. 2008;57(9):2321-31.

60.Arnold J, Jánoska M, Kajon AE, Metzgar D, Hudson NR, Torres S, et al. Genomic characterization of human adenovirus 36, a putative obesity agent. Virus Res. 2010 May;149(2):152-61.

61.Dhurandhar EJ, Dubuisson O, Mashtalir N, Krishnapuram R, Hegde V, Dhurandhar NV. E4orf1: a novel ligand that improves glucose disposal in cell culture. PLoS One. 2011;6(8):e23394.

62.Dhurandhar EJ, Krishnapuram R, Hegde V, Dubuisson O, Tao R, Dong XC, et al. E4orf1 improves lipid and glucose metabolism in hepatocytes: a template to improve steatosis & hyperglycemia. PLoS One. 2012;7(10):e47813.

63.Wang ZQ, Yu Y, Zhang XH, Qin J, Floyd E. Gene expression profile in human skeletal muscle cells infected with human adenovirus type 36. J Med Virol. 2012;84(8):1254-66.

64.Krishnapuram R, Dhurandhar EJ, Dubuisson O, Hegde V, Dhurandhar NV. Doxycycline-regulated 3T3-L1 preadipocyte cell line with inducible, stable expression of adenoviral E4orf1 gene: a cell model to study insulin-independent glucose disposal. PLoS One. 2013;8(3):e60651.

65.Na HN, Nam JH. Proof-of-concept for a virus-induced obesity vaccine; vaccination against the obesity agent adenovirus 36. Int J Obes (Lond). 2014;38(11):1470-4.

66.Kusminski CM, Gallardo-Montejano VI, Wang ZV, Hegde V, Bickel PE, Dhurandhar NV, et al. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte. Mol Metab. 2015;4(10):653-64.

67.Chappell CL, Dickerson M, Day RS, Dubuisson O, Dhurandhar NV. Adenovirus 36 antibody detection: Improving the standard serum neutralization assay. J Virol Methods. 2017;239:69-74.

68.McMurphy TB, Huang W, Xiao R, Liu X, Dhurandhar NV, Cao L. Hepatic expression of adenovirus 36 E4ORF1 improves glycemic control and promotes glucose metabolism through AKT activation. Diabetes. 2017;66(2):358-71.

69.Hegde V, Vijayan M, Kumar S, Akheruzzaman M, Sawant N, Dhurandhar NV, et al. Adenovirus 36 improves glycemic control and markers of Alzheimer’s disease pathogenesis. Biochim Biophys Acta Mol Basis Dis. 2019;1865(11):165531.

70.Feizy Z, Peddibhotla S, Khan S, Hegde V, Wang S, Dhurandhar NV. Nanoparticle-mediated in vitro delivery of E4orf1 to preadipocytes is a clinically relevant delivery system to improve glucose uptake. Int J Obes (Lond). 2020;44(7):1607-16.

71.Akheruzzaman M, Hegde V, Shin AC, Dhurandhar NV. Reducing endogenous insulin is linked with protection against hepatic steatosis in mice. Nutr Diabetes. 2020;10(1):11.

72.Afruza R, Akheruzzaman M, Dhurandhar NV, Hegde V. E4orf1, an adeno-viral protein, attenuates renal lipid accumulation in high fat fed mice: a novel approach to reduce a key risk factor for chronic kidney disease. Heliyon. 2020;6(10):e05261.

73.Rathod M, Vangipuram SD, Krishnan B, Heydari AR, Holland TC, Dhurandhar NV. Viral mRNA expression but not DNA replication is required for lipogenic effect of human adenovirus Ad-36 in preadipocytes. Int J Obes (Lond). 2007;31(1):78-86.

74.Jiao Y, Aisa Y, Liang X, Nuermaimaiti N, Gong X, Zhang Z, et al. Regulation of PPARγ and CIDEC expression by adenovirus 36 in adipocyte differentiation. Mol Cell Biochem. 2017;428(1-2):1-8.

75.Pasarica M, Mashtalir N, McAllister EJ, Kilroy GE, Koska J, Permana P, et al. Adipogenic human adenovirus Ad-36 induces commitment, differentiation, and lipid accumulation in human adipose-derived stem cells. Stem Cells. 2008;26(4):969-78.

76.Rathod MA, Rogers PM, Vangipuram SD, McAllister EJ, Dhurandhar NV. Adipogenic cascade can be induced without adipogenic media by a human adenovirus. Obesity (Silver Spring). 2009;17(4):657-64.

77.Na HN, Kim H, Nam JH. Novel genes and cellular pathways related to infection with adenovirus-36 as an obesity agent in human mesenchymal stem cells. Int J Obes (Lond). 2012;36(2):195-200.

78.Jiao Y, Mao X, Chang X, Abudureyimu K, Zhang C, Lu J, et al. Adenovirus36 infection expresses cellular APMI and Visfatin genes in overweight Uygur individuals. Diagn Pathol. 2014;9:83.

79.Dubuisson O, Dhurandhar EJ, Krishnapuram R, Kirk-Ballard H, Gupta AK, Hegde V, et al. PPARgamma-independent increase in glucose uptake and adiponectin abundance in fat cells. Endocrinology. 2011;152(10):3648-60.

80.Krishnapuram R, Dhurandhar EJ, Dubuisson O, Kirk-Ballard H, Bajpeyi S, Butte N, et al. Template to improve glycemic control without reducing adiposity or dietary fat. Am J Physiol Endocrinol Metab. 2011;300(5):E779-89.

81.Keller P, Petrie JT, De Rose P, Gerin I, Wright WS, Chiang SH, et al. Fat-specific protein 27 regulates storage of triacylglycerol. J Biol Chem. 2008;283(21):14355-65.

82.Liang L, Zhao M, Xu Z, Yokoyama KK, Li T. Molecular cloning and characterization of CIDE-3, a novel member of the cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector family. Biochem J. 2003;370(Pt 1):195-203.

83.Wang ZQ, Yu Y, Zhang XH, Floyd EZ, Cefalu WT. Human adenovirus 36 decreases fatty acid oxidation and increases de novo lipogenesis in primary cultured human skeletal muscle cells by promoting Cidec/FSP27 expression. Int J Obes (Lond). 2010;34(9):1355-64.

84.Cancelier ACL, V Dhurandhar N, Peddibhotla S, Atkinson RL, Silva HCG, Trevisol DJ, et al. Adenovirus 36 infection and daycare starting age are associated with adiposity in children and adolescents. J Pediatr (Rio J). 2021;97(4):420-5.

85.Sapunar J, Fonseca L, Molina V, Ortiz E, Barra MI, Reimer C, et al. Adenovirus 36 seropositivity is related to obesity risk, glycemic control, and leptin levels in Chilean subjects. Int J Obes (Lond). 2020;44(1):159-66.

86.Waye MM, Chan JC, Tong PC, Ma R, Chan PK. Association of human adenovirus-36 with diabetes, adiposity, and dyslipidaemia in Hong Kong Chinese. Hong Kong Med J. 2015;21(Suppl 4):45-7.

87.Aldhoon-Hainerová I, Zamrazilová H, Atkinson RL, Dušátková L, Sedláčková B, Hlavatý P, et al. Clinical and laboratory characteristics of 1179 Czech adolescents evaluated for antibodies to human adenovirus 36. Int J Obes (Lond). 2014;38(2):285-91.

88.Dušátková L, Zamrazilová H, Aldhoon Hainerová I, Atkinson RL, Sedláčková B, Lee ZP, et al. Association of adenovirus 36 infection with obesity-related gene variants in adolescents. Physiol Res. 2015;64(Suppl 2):S197-202.

89.Trovato GM, Castro A, Tonzuso A, Garozzo A, Martines GF, Pirri C, et al. Human obesity relationship with Ad36 adenovirus and insulin resistance. Int J Obes (Lond). 2009;33(12):1402-9.

90.Trovato GM, Martines GF, Garozzo A, Tonzuso A, Timpanaro R, Pirri C, et al. Ad36 adipogenic adenovirus in human non-alcoholic fatty liver disease. Liver Int. 2010;30(2):184-90.

91.Parra-Rojas I, Del Moral-Hernández O, Salgado-Bernabé AB, Guzmán-Guzmán IP, Salgado-Goytia L, Muñoz-Valle JF. Adenovirus-36 seropositivity and its relation with obesity and metabolic profile in children. Int J Endocrinol. 2013;2013:463194.

92.Atkinson RL, Lee I, Shin HJ, He J. Human adenovirus-36 antibody status is associated with obesity in children. Int J Pediatr Obes. 2010;5(2):157-60.

93.Na HN, Hong YM, Kim J, Kim HK, Jo I, Nam JH. Association between human adenovirus-36 and lipid disorders in Korean schoolchildren. Int J Obes (Lond). 2010;34(1):89-93.

94.Na HN, Kim J, Lee HS, Shim KW, Kimm H, Jee SH, Jo I, et al. Association of human adenovirus-36 in overweight Korean adults. Int J Obes (Lond). 2012;36(2):281-5.

95.Park S, Kim J, Shin HJ, Hong YM, Sheen YH, Park HL, et al. Tracking study about adenovirus 36 infection: increase of adiposity. J Microbiol Biotechnol. 2015;25(12):2169-72.

96.Almgren M, Atkinson R, He J, Hilding A, Hagman E, Wolk A, et al. Adenovirus-36 is associated with obesity in children and adults in Sweden as determined by rapid ELISA. PLoS One. 2012;7(7): e41652.

97.Almgren M, Atkinson RL, Hilding A, He J, Brismar K, Schalling M, et al. Human adenovirus-36 is uncommon in type 2 diabetes and is associated with increased insulin sensitivity in adults in Sweden. Ann Med. 2014;46(7):539-46.

98.Cakmakliogullari EK, Sanlidag T, Ersoy B, Akcali S, Var A, Cicek C. Are human adenovirus-5 and 36 associated with obesity in children? J Investig Med. 2014;62(5):821-4.

99.Ergin S, Altan E, Pilanci O, Sirekbasan S, Cortuk O, Cizmecigil U, et al. The role of adenovirus 36 as a risk factor in obesity: the first clinical study made in the fatty tissues of adults in Turkey. Microb Pathog. 2015;80:57-62.

100.Karamese M, Altoparlak U, Turgut A, Aydogdu S, Karamese SA. The relationship between adenovirus-36 seropositivity, obesity and metabolic profile in Turkish children and adults. Epidemiol Infect. 2015;143(16):3550-6.

101.Kocazeybek B, Dinc HO, Ergin S, Saribas S, Ozcabi BT, Cizmecigil U, et al. Evaluation of Adenovirus-36 (Ad-36) antibody seropositivity and adipokine levels in obese children. Microb Pathog. 2017;108:27-31.

102.Lessan N, Saradalekshmi KR, Alkaf B, Majeed M, Barakat MT, Lee ZPL, et al. Obesity and diabetes in an Arab population: role of adenovirus 36 infection. Sci Rep. 2020;10(1):8107.

103.Gabbert C, Donohue M, Arnold J, Schwimmer JB. Adenovirus 36 and obesity in children and adolescents. Pediatrics. 2010;126(4):721-6.

104.Tosh AK, Broy-Aschenbrenner A, El Khatib J, Ge B. Adenovirus-36 antibody status & BMI comparison among obese Missouri adolescents. Mo Med. 2012;109(5):402-3.

105.Laing EM, Tripp RA, Pollock NK, Baile CA, Della-Fera MA, Rayalam S, et al. Adenovirus 36, adiposity, and bone strength in late-adolescent females. J Bone Miner Res. 2013;28(3):489-96.

106.Lin WY, Dubuisson O, Rubicz R, Liu N, Allison DB, Curran JE, et al. Long-term changes in adiposity and glycemic control are associated with past adenovirus infection. Diabetes Care. 2013;36(3):701-7.

107.Vander Wal JS, Huelsing J, Dubuisson O, Dhurandhar NV. An observational study of the association between adenovirus 36 antibody status and weight loss among youth. Obes Facts. 2013;6(3):269-78.

108.Tosh AK, Wasserman MG, McLeay Ii MT, Tepe SK. Human adenovirus-36 seropositivity and obesity among Midwestern US adolescents. Int J Adolesc Med Health. 2017;32(3).

109.Broderick MP, Hansen CJ, Irvine M, Metzgar D, Campbell K, Baker C, et al. Adenovirus 36 seropositivity is strongly associated with race and gender, but not obesity, among US military personnel. Int J Obes (Lond). 2010;34(2):302-8.

110.Sabin MA, Burgner D, Atkinson RL, Pei-Lun Lee Z, Magnussen CG, Cheung M, et al. Longitudinal investigation of adenovirus 36 seropositivity and human obesity: the Cardiovascular Risk in Young Finns Study. Int J Obes (Lond). 2015;39(11):1644-50.

111.Goossens VJ, deJager SA, Grauls GE, Gielen M, Vlietinck RF, Derom CA, et al. Lack of evidence for the role of human adenovirus-36 in obesity in a European cohort. Obesity (Silver Spring). 2011;19(1):220-1.

112.Zhou Y, Pan Q, Wang X, Zhang L, Xiao F, Guo L. The relationship between human adenovirus 36 and obesity in Chinese Han population. Biosci Rep. 2018;38(4):BSR20180553.

113.Berger PK, Pollock NK, Laing EM, Warden SJ, Hill Gallant KM, Hausman DB, et al. Association of adenovirus 36 infection with adiposity and inflammatory-related markers in children. J Clin Endocrinol Metab. 2014;99(9):3240-6.

114.Yamada T, Hara K, Kadowaki T. Association of adenovirus 36 infection with obesity and metabolic markers in humans: a meta-analysis of observational studies. PLoS One. 2012;7(7):e42031.

115.Shang Q, Wang H, Song Y, Wei L, Lavebratt C, Zhang F, et al. Serological data analyses show that adenovirus 36 infection is associated with obesity: a meta-analysis involving 5739 subjects. Obesity (Silver Spring). 2014;22(3):895-900.

116.Xu MY, Cao B, Wang DF, Guo JH, Chen KL, Shi M, et al. Human Adenovirus 36 Infection Increased the Risk of Obesity: A Meta-Analysis Update. Medicine (Baltimore). 2015 Dec;94(51):e2357.

117.Wang ZQ, Cefalu WT, Zhang XH, Yu Y, Qin J, Son L, et al. Human adenovirus type 36 enhances glucose uptake in diabetic and nondiabetic human skeletal muscle cells independent of insulin signaling. Diabetes. 2008;57(7):1805-13.

118.Gao Z, Hwang D, Bataille F, Lefevre M, York D, Quon MJ, et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem. 2002;277(50):48115-21.

119.Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 2007;21(12):1443-55.

120.Schraw T, Wang ZV, Halberg N, Hawkins M, Scherer PE. Plasma adiponectin complexes have distinct biochemical characteristics. Endocrinology. 2008;149(5):2270-82.

121.Blümer RM, van Roomen CP, Meijer AJ, Houben-Weerts JH, Sauerwein HP, Dubbelhuis PF. Regulation of adiponectin secretion by insulin and amino acids in 3T3-L1 adipocytes. Metabolism. 2008;57(12):1655-62.

122.Pereira RI, Leitner JW, Erickson C, Draznin B. Pioglitazone acutely stimulates adiponectin secretion from mouse and human adipocytes via activation of the phosphatidylinositol 3’-kinase. Life Sci. 2008;83(19-20):638-43.

123.Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8(11):1288-95.

124.Gupta AK, Smith SR, Greenway FL, Bray GA. Pioglitazone treatment in type 2 diabetes mellitus when combined with portion control diet modifies the metabolic syndrome. Diabetes Obes Metab. 2009;11(4):330-7.

125.Trovato FM, Catalano D, Garozzo A, Martines GF, Pirri C, Trovato GM. ADV36 adipogenic adenovirus in human liver disease. World J Gastroenterol. 2014;20(40):14706-16.

126.Trovato GM, Martines GF, Trovato FM, Pirri C, Pace P, Garozzo A, et al. Adenovirus-36 seropositivity enhances effects of nutritional intervention on obesity, bright liver, and insulin resistance. Dig Dis Sci. 2012;57(2):535-44.

127.Na HN, Hegde V, Dubuisson O, Dhurandhar NV. E4orf1 enhances glucose uptake independent of proximal insulin signaling. PLoS One. 2016;11(8):e0161275.

128.Hegde V, Na HN, Dubuisson O, Burke SJ, Collier JJ, Burk D, et al. An adenovirus-derived protein: A novel candidate for anti-diabetic drug development. Biochimie. 2016;121:140-50.

129.Yoon IS, Park S, Kim RH, Ko HL, Nam JH. Insulin-sparing and fungible effects of E4orf1 combined with an adipocyte-targeting sequence in mouse models of type 1 and type 2 diabetes. Int J Obes (Lond). 2017;41(10):1601-5.

130.Dhurandhar NV. Insulin sparing action of adenovirus 36 and its E4orf1 protein. J Diabetes Complications. 2013;27(2):191-9.

131.Carvajal R, Wadden TA, Tsai AG, Peck K, Moran CH. Managing obesity in primary care practice: a narrative review. Ann N Y Acad Sci. 2013;1281(1):191-206.

132.Montesi L, El Ghoch M, Brodosi L, Calugi S, Marchesini G, Dalle Grave R. Long-term weight loss maintenance for obesity: a multidisciplinary approach. Diabetes Metab Syndr Obes. 2016;9:37-46.

133.McAllister EJ, Dhurandhar NV, Keith SW, Aronne LJ, Barger J, Baskin M, et al. Ten putative contributors to the obesity epidemic. Crit Rev Food Sci Nutr. 2009;49(10):868-913.

1.Organização Mundial de Saúde – OMS. Disponível em: https://www.sbcbm.org.br/endoscopia-e-obesidade/; acessado em: 16 de abril de 2020.

2.Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica. Diretrizes brasileiras de obesidade 2016. 4.ed. São Paulo: ABESO; 2016. Disponível em: https://abeso.org.br/; acessado em: 28 de agosto de 2020.

3.Kass DA, Duggal P, Cingolani O. Obesity could shift severe COVID-19 disease to younger ages. Lancet [Internet]. 2020;395(10236):1544-5. Disponível em: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31024-2/fulltext; acessado em: 8 de junho de 2020.

4.Schetz M, De Jong A, Deane AM, Druml W, Hemelaar P, Pelosi P, et al. Obesity in the critically ill: a narrative review. Intensive Care Med. 2019;45(6):757-69.

5.Apovian CM. Obesity: definition, comorbidities, causes, and burden. Am J Manag Care. 2016;22(7 Suppl):s176-s185.

6.Andolfi C, Fisichella PM. Epidemiology of obesity and associated comorbidities. J Laparoendosc Adv Surg Tech A. 2018;28(8):919-24.

7.Ghanim H, Aljada A, Hofmeyer D, Syed T, Mohanty P, Dandona P. Circulating mononuclear cells in the obese are in a proinflammatory state. Circulation [Internet]. 2004;110(12):1564-71. Disponível em: https://www.ahajournals.org/doi/10.1161/01.cir.0000142055.53122.fa; acessado em: 8 de junho de 2020.

8.Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet [Internet]. 2020;395(10234):1417-8. Disponível em: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30937-5/fulltext; acessado em: 7 de junho de 2020.

9.Kruglikov IL, Scherer PE. The role of adipocytes and adipocyte-like cells in the severity of COVID-19 infections. Obesity (Silver Spring) [Preprint] [Internet]. 2020. Disponível em: https://onlinelibrary.wiley.com/doi/full/10.1002/oby.22856; acessado em: 8 de junho de 2020.

10.Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med [Internet]. 2020;1-9. Disponível em: https://www.nejm.org/doi/full/10.1056/NEJMoa2015432; acessado em: 7 de junho de 2020.

11.Bhatheja S, Panchal HB, Ventura H, Paul TK. Obesity cardiomyopathy: pathophysiologic factors and nosologic reevaluation. Am J Med Sci. 2016;352(2):219-22.

12.Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet [Internet]. 2020;395(10239):1763- 70. Disponível em: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31189-2/fulltext; acessado em: 6 de junho de 2020.

13.Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA [Internet]. 2020;323(20):2052-9. Disponível em: https://jamanetwork.com/journals/jama/fullarticle/2765184; acessado em: 6 de junho de 2020.

14.Kalligeros M, Shehadeh F, Mylona EK, Benitez G, Beckwith CG, Chan PA, et al. Association of obesity with disease severity among patients with COVID-19. Obesity [Preprint] [Internet]. 2020;28(7):1200-4. Disponível em: https://onlinelibrary.wiley.com/doi/full/10.1002/oby.22859; acessado em: 6 de junho de 2020.

15.Becker R. COVID-19 update: Covid-19-associated coagulopathy. J Thromb Thrombolys [Internet]. 2020;50:54-67. Disponível em: https://link.springer.com/article/10.1007/s11239-020-02134-3; acessado em: 7 de junho de 2020.

1.Código de Ética Médica: Resolução CFM no 2.217, de 27 de setembro de 2018, modificada pelas Resoluções CFM no 2.222/2018 e 2.226/2019/Conselho Federal de Medicina – Brasília: Conselho Federal de Medicina, 2019, Capítulo XIII, Art. 113.

2.Organização Mundial da Saúde. Constituição da Organização Mundial da Saúde. Documentos básicos, suplemento da 45a edição, outubro de 2006. Disponível em: https://www.who.int/governance/eb/who_constitution_sp.pdf; acessado em: 20 de agosto de 2021.

3.Chaput JP. Sleep patterns, diet quality and energy balance. Physiol Behav. 2014;134:86-91.

4.Cappuccio FP, Miller MA. Sleep and cardio-metabolic disease. Curr Cardiol Rep. 2018;19:67-79.

5.Medic G, Wille MHME. Short- and long-term health consequences of sleep disruption. Nat Sci Sleep. 2017;9:151-61.

6.Reinke H, Asher G. Crosstalk between metabolism and circadian clocks. Nat Rev Mol Cell Biol. 2019;20:227-41.

7.Afaghi A, O’Connor H, Chow CM. High-glycemic-index carbohydrate meals shorten sleep onset. Am J Clin Nutr. 2007;85(2):426-30.

8.Grandner MA, Jackson N, Gerstner JR, Knutson KL. Dietary nutrients associated with short and long sleep duration. Data from a nation ally representative sample. Appetite. 2013;64:71-80.

9.Phillips F, Chen CN, Crisp AH, Koval J, McGuinness B, Kalucy RS, et al. Isocaloric diet changes and electroencephalographic sleep. Lancet. 1975;2(7938):723-5.

10.St-Onge M, Roberts A, Shechter A, Choudhury AR. Fiber and saturated fat are associated with sleep arousals and slow wave sleep. J Clin Sleep Med. 2016;12(1):19-24.

11.Markus C, Jonkman L, Lammers J, Deutz N, Messer M, Rigtering N. Evening intake of α-lactalbumin increases plasma tryptophan availability and improves morning alertness and brain measures of attention. Am J Clin Nutr. 2005;81(5):1026-33.

12.Peuhkuri K, Sihvola N, Korpela R. Diet promotes sleep duration and quality. Nutr Res. 2012;32(5):309-19.

13.Silber B, Schmitt J. Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci Biobehav Rev. 2010;34(3):387-407.

14.Grandner M, Jackson N, Gerstner J, Knutson K. Sleep symptoms associated with intake of specific dietary nutrients. J Sleep Res. 2014;23(1):22-34.

15.Rondanelli M, Opizzi A, Monteferrario F, Antoniello N, Manni R, Klersy C. The effect of melatonin, magnesium, and zinc on primary insomnia in long-term care facility residents in Italy: a double-blind, placebo-controlled clinical trial. J Am Geriatr Soc. 2011;59(1):82-90.

16.Saito H, Cherasse Y, Suzuki R, Mitarai M, Ueda F, Urade Y. Zinc-rich oysters as well as zinc-yeast- and astaxanthin-enriched food improved sleep efficiency and sleep onset in a randomized controlled trial of healthy individuals. Mol Nutr Food Res. 2017;61(5).

17.Majid MS, Ahmad HS, Bizhan H, Mohammad Hosein HZ, Mohammad A. The effect of vitamin D supplement on the score and quality of sleep in 20-50 year-old people with sleep disorders compared with control group. Nutr Neurosci. 2017:1-9.

18.Maughan RJ, Burke LM, Dvorak J, Larson-Meyer DE, Peeling P, Phillips SM, et al. IOC consensus statement: dietary supplements and the high-performance athlete. Br J Sports Med. 2018;52:439-55.

19.Duranti S, Ferrario C, van Sinderen D, Ventura M, Turroni F. Obesity and microbiota: an example of an intricate relationship. Genes Nutr. 2017;12:18.

20.David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559-63.

21.Sanders ME, Akkermans LM, Haller D, Hammerman C, Heimbach J, Hormannsperger G, et al. Safety assessment of probiotics for human use. Gut Microbes. 2010;1:164-85.

22.Marteau P. Safety aspects of probiotic products. Naringsforskning. 2001;45:22-4.

23.Cesaro C, Tiso A, Del Prete A, Cariello R, Tuccillo C, Cotticelli G, et al. Gut microbiota and probiotics in chronic liver diseases. Dig Liver Dis. 2011;43:431-8.

24.Gleeson M, Bishop N, Oliveira M, McCauley T, Tauler P, Muhamad AS. Respiratory infection risk in athletes: association with antigen-stimulated IL- 10 production and salivary IgA secretion. Scand J Med Sci Sports. 2012;22:410-7.

25.Ng SC, Hart AL, Kamm MA, Stagg AJ, Knight SC. Mechanisms of action of probiotics: recent advances. Inflamm Bowel Dis. 2009;15:300-10.

26.Besselink MG, van Santvoort HC, Buskens E, Boermeester MA, van Goor H, Timmerman HM, et al. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2008;371:651-9.

27.Sanders ME, Merenstein DJ, Ouwehand AC, Reid G, Salminen S, Cabana MD, et al. Probiotic use in at-risk populations. J Am Pharm Assoc (2003). 2016;56:680-6.

28.Vallabhaneni S, Walker TA, Lockhart SR, Ng D, Chiller T, Melchreit R, et al. Centers for Disease Control and Prevention. Disponível em: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6406a6.htm.

29.Marston WM. Emotions of normal people. London: K. Paul, Trench, Trubner & Co. Ltd.; 1928.

30.Deviney D, Mills LH, Gerlich R. Environmental impacts on GPA for accelerated schools: a values and behavioral approach. Journal of Instructional Pedagogies. 2010:31-15.

31.De Lucia Rolfe E, Sleigh A, Finucane FM, Brage S, Stolk RP, et al. Ultrasound measurements of visceral and subcutaneous abdominal thickness to predict abdominal adiposity among older men and women. Obesity (Silver Spring). 2010;18(3):625-31.

32.Stolk RP, Meijer R, Mali WP, Grobbee DE, van der Graaf Y. Ultrasound measurements of intraabdominal fat estimate the metabolic syndrome better than do measurements of waist circumference. Am J Clin Nutr. 2003;77:857-60.

33.Aragon AA, Schoenfeld BJ, Wildman R, Kleiner S, VanDusseldorp T, Taylor L, et al. International society of sports nutrition position stand: diets and body composition. J Int Soc Sports Nutr. 2017;14:16.

34.Mancini MC (coord.). Tratado de Obesidade. 2.ed. Rio de Janeiro: Guanabara Koogan; 2015. cap 2. p.73-7.

35.Cômodo ARO, Dias ACF, Tomaz BA, Silva-Filho AA, Werustsky CA, Ribas DF, et al. Utilização da bioimpedância para avaliação da massa corpórea. Projeto Diretrizes, AMB.

36.Smith-Ryan AE, Fultz SN, Melvin MN, Wingfield HL, Woessner MN. Reproducibility and validity of A-mode ultrasound for body composition measurement and classification in overweight and obese men and women. PLoS One. 2014;9(3):e91750.

37.Dias ACF, Silva Filho AA, Cômodo ARO, Tomaz BA, Ribas DF, Spolidoro J, et al. Gasto energético avaliado pela calorimetria indireta. Projeto Diretrizes AMB.

38.Chavarria-Avila E, Vázquez-Del Mercado M, Gomez-Bañuelos E, Ruiz-Quezada Sl, CastroAlbarran J, Sánchez-López L, et al. The impact of LEP G2548A and LEPR Gln223Arg polymorphisms on adiposity, leptin, and leptin-receptor serum levels in a Mexican mestizo population. BioMed Research International. 2015;2015:1-10.

39.Dias NF, Fernandes AE, Melo ME, Reinhardt HL, Cercato C, Villares SM, et al. Lack of mutations in the leptin receptor gene in severely obese children. Arq Bras Endocrinol Metab. 2012;56(3):178-83.

40.Dubern B, Clement K. Leptin and leptin receptor-related monogenic obesity. Biochimie. 2012;94(10):2111-5.

41.Münzberg H, Morrison CD. Structure, production and signaling of leptin. Metabolism. 2015;64(1):13-23.

42.Oliveira RD, Cerda A, Genvigir FD, Sampaio MF, Armaganijan D, Bernik MM, et al. Leptin receptor gene polymorphisms are associated with adiposity and metabolic alterations in Brazilian individuals. Arq Bras Endocrinol Metab. 2013;57(9):677-84,.

43.Steemburgo T, Azevedo MJ, Martínez JA. Gene-nutrient interaction and its association with obesity and diabetes mellitus. Arq Bras Endocrinol Metab. 2009;53(5):497-508.

44.Ribas-Filho D, Suen VMM. Tratado de Nutrologia. Barueri: Manole; 2013. cap 18. p.389-92.

SBEMO Logo 2022 Vector.png
bottom of page